CONTAMINATION SCREENING EVALUATION REPORT ADDENDUM

(POND SITES AND MAINLINE UPDATE)

Florida Department of Transportation District 1

Project Development and Environment Study
SR 29 from Oil Well Road to SR 82
Collier County, Florida

FPID: 417540-1-22-01

ETDM Number: 3752

March 2024

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by the Florida Department of Transportation (FDOT) pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated May 26, 2022, and executed by the Federal Highway Administration and FDOT.

Executive Summary

The purpose of this Contamination Screening Evaluation Report (CSER) Addendum is to present updates to the original CSER for the State Road (SR) 29 Project Development and Environment (PD&E) Study from Oil Well Road to SR 82 in Collier County, dated July 2018 (FPID: 417540-1-22-01). Two alignments, Central Alternative #1 Revised and Central Alternative #2, were assessed in the *Contamination Screening Evaluation and Pond Siting Report* dated July 2018. This CSER Addendum assesses the preferred alignment (Central Alternative #2). This addendum outlines changes to sites previously identified in the July 2018 CSER, describes new sites located along the preferred alignment, and assigns contamination risk ratings to proposed stormwater pond sites. The limits associated with this CSER Addendum begin at the intersection at SR 29 / County Road (CR) 846 and extend to the SR 29 / SR 82 intersection (**Figure 1**). The "project area" includes the existing and proposed right-of-way (ROW) for the preferred alignment, including pond sites. The "study area" includes the project area and contamination site search distances of 500-feet, 1,000-feet, and ½ mile.

The pond sites discussed in the July 2018 CSER have been revised due to project design changes. While the footprint for some pond sites remained unchanged, others were modified, and one pond site was added. A total of 9 pond sites were assessed in this CSER Addendum.

This CSER Addendum has been prepared in general accordance with the PD&E Manual (July 1, 2023). Desktop research was performed for a total of 50 contamination sites (including 8 new sites) and 9 ponds. No field reviews were performed. **Table 1** and **Table 2** below present summaries of the risk ratings assigned to the contamination sites and ponds:

Table 1 – Contamination Site Risk Rating Summary							
High Medium Low No							
4	18	23	5				

Table 2 – Pond Site Risk Rating Summary							
High Medium Low No							
0	7	1	1				

Based on the conclusions of the study and the risk ratings noted above, the following recommendations are made for this project:

- No further evaluation is recommended for the contamination sites or pond sites assigned risk ratings of No or Low as they are not expected to have contamination involvement.
- A total of 4 High and 25 Medium rated contamination sites/ponds were identified within the study area and should be considered for Level II testing. Level II testing is performed to assess the presence/absence of contamination, identify impacts to construction, and to develop site-specific recommendations. Level II activities are performed by the Florida Department of Transportation's (FDOT's) Contamination Assessment and Remediation (CAR) contractor and should be completed prior to ROW acquisition and construction. Typically, the Level II testing

is performed during the design phase and can include soil borings, monitoring well installation, soil and groundwater sampling, laboratory testing, Organic Vapor Analyzer (OVA) screening, boundary surveys, additional file research, and/or Ground Penetrating Radar (GPR) surveys. Further evaluation and Level II testing, at the discretion of the District Contamination Impact Coordinator (DCIC), is recommended for these 29 High and Medium rated locations.

- Note, one of the Medium rated sites is a buried petroleum pipeline (Site 69 Sunniland Pipeline). The precise location of the pipeline was not reasonably ascertainable. The pipeline should be presumed to contain petroleum products and caution should be exercised during construction activities. GPR and assessment tasks are warranted prior to construction to identify the precise location of the pipeline and any soil/groundwater impacts.
- Level II testing costs are estimated at \$2,000 to \$10,000 per site. If impacts are identified during Level II testing, Level III support activities such as source removal and/or dewatering may be required during construction and are estimated at \$50,000 to \$100,000 per site.
- Once final design plans are available, additional review is recommended in consideration of dewatering operations that may be necessary under the National Pollutant Discharge Elimination System (NPDES) Generic Permit for Stormwater Discharges from Large and Small Construction Activities. Verification testing may be warranted for contamination issues within 500 feet of the dewatering area.

Table of Contents

1.0 Introduction												
2.0	Projec	Project Description										
3.0	Metho	lethodology										
4.0	Projec	ct Impacts	5									
5.0	Conclu	usions and Recommendations	17									
Ар	per	ndices										
CSER A	ppendix	ix AContaminatio	on Site Map									
CSER A	ppendix	ix B Supplemental I	nformation									

1.0 Introduction

A PD&E Public Hearing was held on November 15, 2018, to present the Preferred Alternative and provide the public with the opportunity to review project documents and provide comments. Refinements to the Preferred Alternative have been made to meet the FDOT Design Manual requirements and include the identification of stormwater management facilities necessary to accommodate stormwater runoff. This CSER Addendum supplements the *Contamination Screening Evaluation and Pond Siting Report* dated July 2018 and specifically addresses the design refinements for the project. See **Figure 1 – Project Location Map**.

The purpose of this report is to present the findings of a contamination screening evaluation for 9 pond sites, any new contamination sites, and an update to previously identified contamination sites. This report identifies and evaluates known or potential contamination sites within or in close proximity to the SR 29 ROW and pond sites, that may affect implementation of the project. This is referred to as the "project area" throughout this report. The PD&E *Contamination Screening Evaluation and Pond Siting Report* (FPID 417540-1) dated July 2018 was reviewed and relevant information is referenced herein.

2.0 Project Description

CR 846 to SR 29 Bypass Junction: the proposed new signalized intersection at CR 846 and the proposed intersection at Gopher Ridge Road have been revised to roundabouts. The proposed ROW requirement previously varied from 108 feet to 200 feet and has been increased to varying from 144 feet to 250 feet. The two 11-foot travel lanes in each direction have been increased to 12-foot travel lanes in each direction from CR 846 to Gopher Ridge Road. The 6-foot sidewalk and 7-foot buffered bicycle lanes in each direction have been replaced with 12-foot shared use paths from CR 846 to Gopher Ridge Road. Twelve-foot shared use paths have been added to both sides of the corridor from Gopher Ridge Road to the SR 29 Bypass Junction. As a result of criteria updates, the proposed design speeds, ranging from 45-50 miles per hour (mph), have been updated and range from 45-55 mph. Three Stormwater Management Facilities (SMFs) have been identified. The three proposed SMFs will require approximately 22 acres of offsite ROW. Stormwater runoff will be conveyed to the proposed SMFs by an open drainage system within the existing mainline ROW.

North of New Market Road West to SR 82: the currently existing signalized intersection at New Market Road West and SR 29 has been revised to a roundabout. A 10-foot shared use path has been added on the east side of the roadway from north of New Market Road West to SR 82, thus providing a 10-foot shared use path on both sides of the corridor. The mainline roadway improvements required for the proposed project will not require any additional ROW. As a result of criteria updates, the proposed design speeds, ranging from 50-60 mph, have been unified at 55 mph. Six SMFs have been identified. The six proposed SMFs will require approximately 20.3 acres of offsite ROW. Stormwater runoff will be conveyed to the proposed SMFs by an open drainage system within the existing mainline ROW.

29 82 END PD&E LIMITS Immokalee Regional Airport 29 PD&E Preferred Alternative **Concurrent Design Sections** BEGIN PD&E LIMITS South of CR 846 to SR 29 Bypass Junction South of New Market RoadWest to SR 82

Figure 1 – Project Location Map

3.0 Methodology

This CSER Addendum was performed in general accordance with the FDOT PD&E Manual (July 1, 2023). The evaluation included the following tasks:

- Identify and evaluate new contamination sites,
- Review and update risk ratings of contamination sites identified in the Contamination Screening Evaluation Report and Pond Siting Report, SR 29 Immokalee PD&E Study from Oil Well Road to SR 82, FPID 417540-1-22-01, dated July 2018,
- Review the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020 (FDOT comments were addressed),
- Review the Contamination Screening Evaluation Report, Addendum to Include Recommended Pond Sites and Mainline Changes dated February 16, 2024 (FPID 417540-5-52-01); (FDOT comments were addressed),
- Review of the adjoining north Final Level II Field Screening Report Final Ponds dated July 6, 2017 (FPID 417878-4-52-01),
- Document review using the Collier County Property Appraiser's website to identify property owner names, address, and property boundaries to assist in determining land use information or other contamination-related details,
- A regulatory review of government databases for permits and/or violations associated with contamination issues,
- Determining the contamination potential and assigning a risk rating for each contamination site, and each pond site alternative within the project limits. The FDEP Map Direct and OCULUS databases and United States Environmental Protection Agency (EPA) databases were used to identify sites, facilities, or listings within the study area containing documented or suspected petroleum contamination or other hazardous materials. All are reviewed for their potential contamination impacts to the project area. This report utilizes the recommended search distances included in the FDOT PD&E Manual (July 1, 2023), as follows:
 - o 500-feet from the ROW line for petroleum, drycleaners, and non-petroleum sites,
 - 1,000-feet from the ROW line for non-landfill solid waste sites (such as recycling facilities, transfer stations, and debris placement areas), and
 - ½-mile from the ROW line for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), National Priorities List (NPL) Superfund sites, or Landfill sites.
- No field reconnaissance was performed for this evaluation.

3.1 Determination of Potential Risk

After gathering and reviewing all readily available public information, contamination risk ratings were assigned to sites of potential contamination concern and pond sites. The rating system is divided into 4 categories of risk as defined by the FDOT in the PD&E Manual (July 1, 2023). These 4 degrees of risk ratings are No, Low, Medium, and High. This system expresses the degree of concern for potential contamination problems.

No - A review of available information on the property and a review of the conceptual or design plans indicates there is no potential contamination impact to the project. It is possible that contaminants have been handled on the property. However, findings from the Level I evaluation indicate that contamination impacts are not expected.

Low - A review of available information indicates that past or current activities on the property have an ongoing contamination issue; the site has a hazardous waste generator identification (ID) number, or the site stores, handles, or manufactures hazardous materials. However, based on the review of conceptual or design plans and/or findings from the Level I evaluation, it is not likely that there would be any contamination impacts to the project.

Medium - After a review of conceptual or design plans and findings from a Level I evaluation, a potential contamination impact to the project has been identified. If there is insufficient information (such as regulatory records or site historical documents) to make a determination as to the potential for contamination impact, and there is reasonable suspicion that contamination may exist, the property should be rated at least as a Medium. Properties used historically as gasoline stations and which have not been evaluated or assessed by regulatory agencies, sites with abandoned in place underground petroleum storage tanks or currently operating gasoline stations should receive this rating.

High - After a review of all available information and conceptual or design plans, there is appropriate analytical data that shows contamination will substantially impact construction activities, have implications to ROW acquisition or have other potential transfer of contamination related liability to the FDOT.

At the request of the FDOT District 1 DCIC, all sites located within 500-feet of the ROW with open/active discharges (identified using state and/or federal regulatory databases) shall be assigned a risk rating of High or Medium since these sites have the potential to affect at least the permitting for the National Pollutant Discharge Elimination System (NPDES) Generic Permit for Stormwater Discharges from Large and Small Construction Activities dewatering activities.

The contamination risk rating can subsequently change based on changes in design, construction activities, construction methods, ROW needs, or other factors when the project progresses from PD&E to Design and Construction.

4.0 Project Impacts

The project area includes the existing and proposed ROWs and pond sites. When facilities/sites are identified in proximity to the ROW, they are assigned a risk rating using the FDOT's standard methodology (High, Medium, Low, or No). In a similar manner, pond sites are assigned a risk rating so they can be evaluated as part of the overall engineering design process. Details for the contamination sites are provided in **Table 3** and pond sites are provided in **Table 4**. Contamination sites, ponds, and search buffers are shown on the 2021 aerial photograph presented in **CSER Appendix A**. To remain consistent with the July 2018 *Contamination Screening Evaluation and Pond Siting Report*, contamination site numbers were maintained. The "FA" designation was used in the 2018 CSER and indicates the contamination site was identified from "historical maps, field reconnaissance, and aerial reviews." A total of 8 new contamination sites (Sites 67-74) presented in this report were identified subsequent to the July 2018 *Contamination Screening Evaluation and Pond Siting Report*.

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
FA-11	Blocker's Furniture LLC 110 12th Street	None found	Adjacent south	Diesel, Jet A	This site was previously assigned a risk rating of Low due to a separation distance of 400 feet, and no reported discharges.	No changes. Given the separation distance of 400 feet, and no reported discharges, this site retains a risk rating of Low.	Low
FA-12	Floyd Crews Property 861 CR 846	None found	Adjacent south	Diesel, Waste oil	This site was previously assigned a risk rating of Medium due to the historic use as a well drillers lay down yard from 1999 to 2017 with one AST and three drums noted on Google Earth Street View imagery in 2011. No regulatory files were found.	No changes. Given the historic use as a well drillers lay down yard with one AST and three drums, this site retains a risk rating of Medium.	Medium
FA-13	Immokalee Fire Control District 502 New Market Rd	None found	Adjacent west	Diesel	This site was previously assigned a risk rating of Low given the separation distance of 300 feet for an emergency generator with integral AST (less than 500-gallons).	Immokalee Fire Station 30 was constructed under an NPDES General Permit issued on September 10, 2021 and terminated on September 1, 2023. FDEP documentation shows two (2) ASTs installed in June 2023 including a 3,000-gallon diesel tank and 500-gallon (unregulated) tank. Both tanks are located behind the building (CSER Appendix B). Based on the recent construction, location of ASTs on pavement, and the canal between this site and the mainline, this site retains a risk rating of Low.	Low
FA-14	All Star Truck Brokers (also J&B Rentals of Immokalee LLC, David H Carter Trust property) 19301 Immokalee Rd	None found	230 feet south	Solvents, Waste oil	This site was previously assigned a risk rating of Medium. Former J&B Rental (yard equipment rentals), 2 55-gallon drums observed in C1R proposed ROW during 2014 field review, 2011 Google Earth Street View and 2015 Bing Maps Streetside, stained soils noted at the base of the drums. During 2017 field review signage notes site as All Star Truck Broker's, drums removed, impacted soils may be <i>de minimis</i> .	No changes. Given the historic use as yard equipment rentals with two drums and the lack of information on the observed stains, this site retains a risk rating of Medium.	Medium
FA-15	Pond 31-C2 Gopher Ridge I Joint Venture Parcel IDs 00087520008 and 00087440007	None found	Within	Pesticides, Herbicides	* This site was previously assigned a risk rating of Medium since it was a grove within the project area.	No changes. Given the groves located within the project area, this site maintains a risk rating of Medium.	Medium
FA-16	Gopher Ridge I Joint Venture Parcel ID 00087520008	None found	Within	Pesticides, Waste oil, Diesel	* This site was previously assigned a risk rating of Low. This site contains a former staging area within an existing citrus grove. No issues were discovered during a March 2018 field review during preparation of the 2018 CSER. The site's rating was increased to Medium due to the presence of the citrus grove where surface and subsurface soils may contain application levels of pesticides and herbicides.	No changes. The site's risk rating was increased to Medium due to the presence of the citrus grove where surface and subsurface soils may contain application levels of pesticides and herbicides.	Medium

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
FA-17	Gopher Ridge I Joint Venture Parcel ID 00087440007	None found	Within	Pesticides, Herbicides	This site was previously assigned a risk rating of Medium. The proposed corridor is located within a citrus grove in this area. Groves have the potential to contain elevated contaminants related to herbicide and pesticide applications. Property appraiser notes the parcel land use as orchard groves, citrus, etc.	No changes. Given the existence of citrus groves within the project area, this site retains a risk rating of Medium.	Medium
FA-18	Gopher Ridge I Joint Venture Parcel ID 00068760007	None found	Within	Pesticides, Herbicides	This site was previously assigned a risk rating of Medium. The proposed corridor is located within a citrus grove. Groves have the potential to contain elevated contaminants related to herbicide and pesticide applications. Property appraiser notes the parcel land use as groves, citrus, etc.	No changes. Given the existence of citrus groves within the project area, this site retains a risk rating of Medium.	Medium
FA-19	Barron Collier Partnership Parcel 00067880001	None found	Adjacent east	Pesticides, Herbicides	This site was previously assigned a risk rating of Medium due to historic use as groves and location within the ROW.	No changes. Given the existence of citrus groves within the project area, this site retains a risk rating of Medium.	Medium
FA-20	Barron Collier Partnership Parcel 00067880001	None found	Adjoining east	Pesticides, Herbicides	Same parcel as FA-19. This site was previously assigned a risk rating of Medium given the use as groves and location within the limits of Pond 39 and FPC E.	Although the parcel adjoins the ROW, given the separation distance (with an unpaved road and ditch) of the actual groves 80 feet east, the risk rating is changed from Medium to Low.	Low
FA-21	Florida Power & Light Immokalee Solar Energy Center (Former Barron Collier Partnership) Parcel 000650000003 3350 SR 29	None found	Adjoining east	Pesticides, Herbicides, PCBs, TRPH, Lead	This site was previously assigned a risk rating of Medium given the use as groves.	Aerial photographs first depict the solar farm and electrical substation in 2022. Contamination concerns at electrical substations typically include Polychlorinated Biphenyls (PCBs), petroleumbased fluids, and lead from batteries. The electrical substation is located over 250 feet east of the ROW. Other than the electrical substation, contamination concerns associated with the solar farm were not found. No regulatory files were found. Given the redevelopment as a solar farm, including an electrical substation in 2022, potential residual impacts associated with former groves were mitigated. Given potential impacts from the former groves were mitigated, and the separation distance, and lack of reported contamination concerns associated with the electrical substation, the risk rating is changed from Medium to Low.	Low
21	Everglades farm Equipment (also Sandland Equip. Corp.) 800 E Main St	TANKS 9803972 STRCRA FLD984227603	Adjacent south	Waste oil	This site was previously assigned a risk rating of Low. Existing equipment rental and sales (farm management services), Conditionally Exempt Small Quantity Generator (CESQG) with several violations resolved in 2008, covered maintenance 100 feet southwest of corridor, exterior equipment storage adjacent southwest, waste oil AST within 130 feet of proposed project corridor.	No Changes.	Low
22	Winfield Solutions (also Prosource One, AGRO Distribution)	LUST 9102828 STRCRA FLR000064626	Adjacent south	Diesel, Waste oil	This site was previously assigned a risk rating of Medium. Existing agricultural chemical wholesales, LUST dibromoethane (EDB) spill 1999 contained within warehouse structure, 7-pesticide (non-regulated) ASTs within warehouse structure, former ASTs closed in 2012, no contamination reported in closure report, former ASTs adjacent and south of proposed CR 846 ROW, CESQG with no violations.	No Changes. Given the confined nature of the 1999 spill within the warehouse structure, and no contamination encountered during closure activities, this site is reassigned a risk rating of Low.	Low

	Table 3 — Contamination Sites Risk Ratings								
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating		
24	HBS Florida Specialties LLC (also Collier Farms Inc.) 601 E Main St	NONSTD FLTMP9404633	Adjacent south	None	This site was previously assigned a risk rating of No. Existing produce packaging plant, CESQG no violations, temporary Environmental Protection Agency (EPA) ID number created to facilitate the removal of 21 drums containing various pesticides. As indicated on the Waste Manifest, the drums were removed from the Collier Farms Crows Nest Facility located 13.2 miles east of the database geocoded location. No OCULUS records after 1994.	No Changes	No		
26	Combs Oil Co Immokalee Bulk Facility (also Balgas, Combs Oil Co Immokalee Truck Stop, and N & R Gas Station) 525 East Main Street (also listed at 527 East Main Street)	LUST 8839434 LUST 8839176	Adjacent southwest	Fuel oil, Gasoline, Diesel	This site was previously assigned a risk rating of High due to historic use as a gas station. Closed retail gas station, 3-gasoline USTs and 1-diesel UST removed 2001, DRF 1993, NFA 2003, former USTs and dispensers within 15 feet of existing project corridor. Historical groundwater plume within existing project corridor, groundwater flow to north, no OCULUS files after 2004. Existing bulk storage facility, 10-diesel USTs removed 1988, 2-gasoline USTs in service, DRF 1992, remedial action concluded 2012, PARM on-going, PLIRP 1993, former and existing USTs 150 feet south of proposed project corridor. A High rank was imposed should project improvement activities include groundwater controls (requiring NPDES Permitting) in areas within 500 feet of this site.	FDEP Documentation for this site includes a prior CSER-PARM Report submitted in July 2017 (Appendix B), with quarterly reports continuing through July 2020. A Remedial Action Interim Report was submitted July 2021 (CSER Appendix B). A Discharge Report Incident Notification Form was submitted on August 1,2023 for Interstitial monitoring-for gasoline which was found during vacuum/pressure change. Documentation for Tank #2R1 (a 12,000-gallon gasoline tank) is out of service. The FDEP suspended cleanup activities in June 2022 funded under the Petroleum Restoration Program following major violations in an October 2021 inspection. Documentation for Tanks #1R1 (12,000-gallon diesel), #3R1 (10,000-gallon diesel), and #4R1 (5,000-gallon gasoline) were listed out of service on December 12, 2022. The last Compliance Inspection dated October 25, 2023 (CSER Appendix B) resulted in a Major Out of Compliance finding for no financial responsibility insurance, lack of monitoring and operability testing records, tank overfill protection, and failure to submit an Incident Notification Form (subsequently submitted in August 2023). If development activities are planned in an area where groundwater pumping, dewatering, or excavation at or below the groundwater table is anticipated, further Level II testing by DCIC may be recommended. Refer to the PD&E Manual (2023) for additional information on Dewatering During Construction, guidance for Water Quality Impact Evaluation, and NPDES permitting. Given the open discharge dated August 1, 2023, and the facility's location adjacent southwest to the project area, and may affect NPDES permitting if dewatering is required, this site retains a risk rating of High.	High		
28	Davis Oil Company (also Sunoco Gas Station, Gator Food Store, and Oleum Corp) 726 East Main Street (also listed at 730 East Main Street)	LUST 8518121 LUST 8518087 VOLCLNUP COM_291326	Adjacent southeast	Gasoline, Diesel, Avgas, Lead, Waste oil	This site was previously assigned a risk rating of High. Existing bulk storage facility, 1-leaded gasoline UST removed 1989, 2-aviation gas USTs removed 1991, 4-gasoline and 2-diesel ASTs in service, DRF 1994, source removal 1994, SRCO 2008, historical impacts reported within 35 feet of existing project corridor. Existing retail station, gasoline and diesel dispensers serviced via underground piping from ASTs at bulk storage facility to southeast (see above), 1-waste oil UST and oil water separator removed 1994, DRF 1994 (with above), SRCO 2008 (with above), historical impacts reported within 10 feet of existing project corridor.	The site is currently a Sunoco Gas Station. Given the nature of this site as an active retail station, this site is reassigned a risk rating of Based on the previous history and current use as a retail gas station, the risk rating remains High.	High		
29	Perrydale Farms LLC (also Farm Op Inc.) 403 Main St	TANKS 8518312	420 feet west	Gasoline, Diesel	This site was previously assigned a risk rating of Low since it was a former non-retail agricultural facility with 1-gasoline and 1-diesel AST removed in 1998, no discharges reported, suspect AST locations on 1993 aerial photograph.	No Changes Given the separation distance and no reported discharges, this site retains a risk rating of Low.	Low		

Table 3 — Contamination Sites Risk Ratings								
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating	
30	Davis Oil Company Service Center 524 E Main St	LUST 8521250, 8629389 INDWST FLG910977	Adjacent northwest	Gasoline, Diesel	This site was previously assigned a risk rating of High. Former bulk storage facility and retail station, DRF 1991, CAR 1992, RAP, 1992, O&M 1994-1995, bulk facility and station burned down 1995, DRF 1996, IRA 1996, CAR 1999, RAP MOD 2004, SSA 2006, SRCO 2014 (INDWST-general long term petroleum cleanup permit – FLG910977), groundwater flow generally to the south.	Given the issuance of the general long term petroleum cleanup permit and proximity to the project area, this site retains a risk rating of High	High	
31	Collier County - Immokalee Airport Site 165 Airpark Boulevard	SLDWST 00098127	Within	None	This site was previously assigned a risk rating of Low. Class 910 disaster debris management site, temporary solid waste storage and processing area for yard and demolition wastes.	This site was a pre-authorized Disaster Debris Management Site (DDMS) between 2018-2023. The site was authorized on October 5, 2022 to store and process debris from Hurricane Ian but no records show it was utilized (CSER Appendix B). Based on the lack of use as a debris management site, the risk rating remains Low.	Low	
32	Doug's Garage 535 New Market Rd	STRCRA FLR000115261	200 feet north	Waste oil, Solvents	This site was previously assigned a risk rating of Medium. Verified non-generator or handler, no violations reported, source removal conducted on this site as a result of 1995 discharge from the adjacent property to the south, see site 30, out of service AST with no labelling observed during August 16, 2017 site visit.	No Changes. Given the unresolved contamination issues (also associated with Site 30), this site retains a risk rating of Medium.	Medium	
33	Flores Tire (also Lebonberger) 528 New Market Rd	STRCRA FLR000059709	190 feet west	Waste oil, Solvents	This site was previously assigned a risk rating of Medium. Existing tire sales and auto-repair facility, former exterior above ground maintenance lifts, CESQG with 1 violation resolved in 1999, no records after 1999.	No Changes. Given the reasonable suspicion of unreported discharges, this site retains a risk rating of Medium.	Medium	
34	Crop Production Services, Inc. 116 Jerome Drive,	TANKS 9602496 STRCRA FLR000072082 BRS FLT950052100	460 feet northwest	Pesticides, Arsenic, Lead	This site was previously assigned a risk rating of Low. Existing agricultural wholesales, 4-pesticide (non-regulated) ASTs within structure and secondary containment currently in service, former CESQG with no violations, BRS notes one time removal of 5 tons of Lead Arsenate stock in original containers.	The site is an active Conditionally Exempt SQG and Episodic LQG. FDEP Documentation from June 14, 2018 shows that two (2) 2,500-gallon pesticide tanks were removed. Additionally, two (2) 3000-gallon AST pesticide storage tanks were installed in June 2021. The site owner has been changed to Nutrien AG Solutions (STCM ID #81281) and the site was in compliance according to the latest inspection dated November 19, 2020 (CSER Appendix B). Due to the distance of this site from the mainline and recent compliance reports, the risk rating for this site remains Low.	Low	
35	Immokalee Auto General Repair (also Ven-Mar, Farmers Supplies, and FMC Corp ACG) 524 New Market Rd	TANKS 9200993 STRCRA FLD131518839	160 feet west	Diesel, Waste oil, Solvents	This site was previously assigned a risk rating of Low. Existing auto repair and truck rentals, former agricultural irrigation sales and new project coordination farm development, one 1,000-gallon diesel AST removed 1992 with no discharges reported, former CESQG with no violations and no records after 1985.		Low	
37	Shell-Stricks (also Strickland property) 520 New Market Rd	LUST 8518290	105 feet west	Gasoline, Diesel, Waste oil, Solvents	This site was previously assigned a risk rating of No. Existing auto repair and former retail station, DRF 1996, SAR 2002, RAP 2003, SRR 2004, MOP 2005-2005, SRCO 2006, groundwater flow to northeast, drainage canal between site and proposed corridor.	No Changes.	No	
38	Immokalee Airport Area Brownfield	BRWNFLDS BF110401000	See Sites 38	A to 38H and 48 (N	lo risk rating assigned for Site 38)			

				,	Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
38A	Immokalee Airport (also Former Airwork Fuel Farm Area)	LUST 8518639	Within	Jet fuel, Avgas, Gasoline, Solvents	This site was previously assigned a risk rating of Medium. Airwork aircraft washing area and former fuel farm. DRF 1990 following removal of UST farm, no cleanup required, DRF closed in 2001, and AST farm removed in 2011. No impacts above cleanup limits detected in soil or groundwater during AST closure.	No Changes. Given the location of this site within the project area and potential for residual contamination, this site retains a risk rating of Medium.	Medium
38B	Airwork Pesticide Staging Area - Immokalee Regional Airport	STRCRA FLR000107144	Within	Pesticides, Metals	This site was previously assigned a risk rating of Medium. Existing pesticide storage and aircraft dispensing area, several metals and pesticides were detected in soil samples collected in 2004, only malathion exceeded cleanup criteria, no groundwater impacts reported in 2005.	No Changes. Given the unresolved soil contamination, this site retains a risk rating of Medium.	Medium
38C	Former Johnson Fuel Farm - Immokalee Regional Airport	None found	Within	Avgas, Gasoline	This site was previously assigned a risk rating of Medium. Former fuel farm area depicted on a 1990 Airport Layout Plan, suspect location noted in 1963, 1973, and 1984 aerial photographs, no regulatory information found. The historical fuel farm is within 30 feet of CR 846 ROW, and proposed C2 Alternative.	No Changes. Given the former fuel farm located within 30 feet of the project area and lack of regulatory files, this site retains a risk rating of Medium.	Medium
38D	Former Unnamed Hanger - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hanger and tie down areas, noted on 1963, 1973, and 1984 aerial photographs, no regulatory information found. The historical hanger is within the proposed C2 Alternative Corridor.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38E	Former South Johnson Hangers - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hanger and tie down areas, depicted on a 1980 Airport Layout Plan, suspect location noted on 1963, 1973, and 1984 aerial photographs, no regulatory information found. The historical hangers are within the proposed C2 Alternative Corridor.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38F	Former Crapse Hanger - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hanger and tie down areas, depicted on a 1980 Airport Layout Plan, suspect location noted on 1963, 1973, 1984, and 1994 aerial photographs, no regulatory information found. The historical hanger is within the proposed C2 Alternative Corridor.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38G	Former North Johnson Hangers - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hangers and tie down areas, depicted on a 1980 Airport Layout Plan, suspect location noted on 1973 aerial photograph, the historical hangers are within the proposed C2 Alternative.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38H	Immokalee Airport - Former Hatfield Fuel Farm Area	None found	Within	Avgas, Gasoline	This site was previously assigned a risk rating of Low. Former fuel farm area depicted on a 1980 Airport Layout Plan, suspect AST noted on 2004 and 2005 aerial photographs, suspect fuel dispenser noted on 1984 aerial photograph, no regulatory information found.	No Changes. Given the lack of reported discharges, this site retains a risk rating of Low.	Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
39	South Florida Packers (also Nobles Collier and A&A Produce) 212 Jerome St	LUST 9501563	475 feet west	Gasoline, Diesel, Lead	This site was previously assigned a risk rating of Medium. Former retail station, two leaded gasoline USTs and one diesel UST removed 1977, DRF 1995, CAR 1995, MOP 1999, SRCO 2004, groundwater flow to southwest.	No Changes. Given the proximity to the project area, this site retains a risk rating of Medium.	Medium
43	Fl Dept of Agriculture/ Consumer - Immokalee State Farmers Market 424 New Market Rd	STRCRA FLR000105221	495 feet south	Solvents, Waste oil	This site was previously assigned a risk rating of Low. Existing farmers market, verified non-generator, no violations reported, however eleven areas of concern were noted during an inspection of Unit 12 (the former David C. Brown produce packing house) conducted on January 28, 2004, the concerns (located mainly in the equipment and vehicle wash down area) were rectified and the case closed on March 11, 2004, no records in OCULUS after the case closed date. This site is immediate up-gradient to former water supply well (#203) associated with the Immokalee Airport (potable) Water Treatment Plant (Site 48) the trace levels of solvents detected in well #203 in 2003 are suspected to have originated from the Site 43 Unit 12 wash down area.	No Changes. Given the regulatory status, and intervening canal, this site retains a risk rating of Low.	Low
48	Immokalee Airport Water Treatment Plant Airport Service Rd	STRCRA FLR000107698	Within	Sodium hypochlorite, Ammonium sulfate, Diesel	This site was previously assigned a risk rating of Low. Existing potable water supply wells, treatment, and storage facility. Chemical storage area 210 feet east of proposed corridor. Deisel powered generator 390 feet east of the proposed corridor, no records found after 2006. A former water supply well (#203) for this site is immediate down-gradient of Site 43 (Immokalee State Farmers Market – Unit 12), trace levels of solvents were identified in this well #203 in 2003, well #203 was abandoned sometime after 2006.	No Changes. This site retains a risk rating of Low.	Low
53	Smith's Wrecker Service 1000 Alachua St	STRCRA FLR000104836	415 feet west	Waste oil, Batteries, Tires	This site was previously assigned a risk rating of No. Existing storage and auto salvage yard, CESQG with eight violations, five resolved in 2004, and three resolved in 2005, no records found after 2005.	No Changes. Given the separation distance, this site retains a risk rating of No.	No
56	M & M Salvage and Used Auto Parts, Inc. (also Immokalee Waste Tire Site/Robert's Auto Salvage, W & T Salvage Yard, and Jay's Towing) 106 Dixie Avenue E	LUST 9805236 STRCRA FLR000024554 SLDWST 95582	230 feet southwest	Gasoline, Waste oil, Batteries, Tires	This site was previously assigned a risk rating of Low. The existing auto salvage yard is 210 feet southwest of the Central Alternative 2 corridor. LUST - one waste oil AST in service, DRF 2002, NFA 2003, small amounts of oil impacted soil were removed from two areas over 500 feet from corridor, no groundwater impacts reported, last LUST entry 2003. STRCRA-CESQG with twelve violations, three resolved in 1997 and nine resolved in 2004, last STRCRA entry 2005. The SLDWST files report the removal of over 50,000 tires from the site and adjacent areas, last SLDWST entry 2011.	This site has an open out-of-compliance case according to a Compliance Assistance Offer (CAO) letter dated August 28, 2023 (CSER Appendix B). An inspection on June 12, 2023 stated the facility is no longer in operation, but holds an active NPDES MSGP (FLR05H006). To close the permit, the facility will have to remove all potential pollutant sources (pile of tires and old auto parts) to be in compliance. Even though the site is out of compliance and storing old tires and auto parts, the risk rating was left at Low due to its distance from the mainline.	Low
58	Huapilla Produce Inc. (also Flores Son's Truck Tires and Browning Brothers Palm 213 W Madison Ave	TANKS 8518201 NONTDS FLR000066035	480 feet southwest	Diesel, Waste oil	This site was previously assigned a risk rating of Low. Existing produce transporter, former used tire disposal SLDWST,	No Changes. Given the separation distance and lack of reported discharges, this site retains a risk rating of Low.	Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
60	K&B Commercial Rentals #1 (also Top Auto Parts) 314 W New Market Rd	STRCRA FLR000064675	485 feet south	None	This site was previously assigned a risk rating of Low. Existing church and former auto parts store, no violations reported, no records found after 2011.	No Changes. Given the separation distance, and lack of reported discharges, this site retains a risk rating of Low.	Low
62	Styes on the Edge (Former Country Cleaners of Immokalee) 1255 N. 15 th Street	TANKS 9501904 FLR000049999	470 feet south	Drycleaning solvents	This site was previously assigned a risk rating of Medium since it was an open discharge (drycleaning solvent) within 500 feet which may affect NPDES permitting if dewatering is required.	This site was issued an SRCO in March 2019. Although the parcel is located 470 feet south of the project limit, the former drycleaners building (source) was located over 650 feet south of the south project limit. Given the regulatory status and separation distance, the risk rating is changed from Medium to No.	No
65	University of Florida IFAS Southwest Florida Research and Education Center (SFREC) 2685 SR 29	TANKS 8735911 HAZARD WASTE FLD981470016	Adjacent west	Petroleum, Pesticides, Herbicides	This site was assigned a risk rating of Low given the separation distance to contamination concerns including a "dump area" with pesticide impacts 2,230 feet west; and ten petroleum storage tanks, the nearest being over 400 feet west of the ROW, with no reported discharges.	Collier County issued a Return to Compliance letter for broken gauges and lack of overfill prevention device testing (noted during the routine April 13, 2023 inspection) associated with petroleum storage tanks on February 6, 2024 (CSER Appendix B). No discharges were reported. Given the separation distance of over 400 feet to the nearest contamination concerns, this site retains a risk rating of Low.	Low
66	Silver Strand Orange Grove 0.5 miles south of SR 82	NONTSD FLT010067312	Adjacent east	Pesticides, Herbicides	This site was previously assigned a risk rating of Low given the grove located adjacent east with an emergency generator number created in 2001 to remove seven drums of aldicarb (suspected location over 3,300 feet east). No cleanup issues were reported. A "decon unit" was observed 230 feet east of existing SR 29 ROW in 2018.	Since multiple parcels in this vicinity are owned by Barron Collier Properties (and "Silver Strand" is not currently identified on the Collier County Property Appraiser database), the limits of Silver Strand Orange Grove were not evident. The location is described as "adjacent east" of SSR 29 in the 2018 CSER. According to the Silver Strand Sod website, Barron Collier Companies agricultural operations are run under the Silver Strand banner which is divided into divisions including Silver Strand Farms, Silver Strand Groves and Immokalee Ranch, totaling over a thousand acres. It appears at least a portion of this grove was acquired and redeveloped by FP&L as a solar farm and electrical substation (FA-21, risk rating Low). Provided the groves east of SR 29 in this vicinity was part of the Silver Strand Orange Grove, although the parcel is adjoining east, the groves are located 80 feet east of the ROW with an intervening ditch and unpaved road. Given the separation distance of 80 feet to the groves, 230 feet to the former "decon unit," and over 3,300 feet to former aldicarb drum location, this site retains a risk rating of Low.	Low
					New Contamination Sites		
67	Collier Health Services/ Marioni Fether Medical Center 1454 Madison Avenue	TANKS 9818091	Adjoining east	Petroleum	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	This site was identified as Site 67 in the Contamination Screening Evaluation Report, Addendum to Include Recommended Pond Sites and Mainline Changes dated February 16, 2024. It was assigned a risk rating of Low given the emergency generator diesel AST installed on November 6, 2020 with no reported discharges. Additionally, two "minor" violations (lack of overfill equipment test, and leak sensor test) were noted and corrected in May 2022 (CSER Appendix B). Although an AST is present, the site was given a Low risk rating due to the recent installation of the AST, lack of reported discharges, and distance of the site from the mainline.	Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
68	Atlantic Coast Line (ACL) Railroad (Haines City Branch) (Abandoned Railway Line)	Aerials	Within	Creosote (polycyclic aromatic hydrocarbons (PAHs) from railroad ties), heavy metals (lead, arsenic), leaked oil, and gasoline constituents	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	Former railway easements crossing the proposed project were noted on historical aerials and maps. The former easements are within the Gopher Ridge Road ROW and parallel to the west side of SR 29 ROW south of Seminole Crossing Trail. All signs of the railroad have been removed. However, lumber cross ties may be encountered as a result of improvement activities for the proposed project. Lumber cross ties are likely treated with creosote compounds. Following their removal, the treated lumber should be disposed of at a lined landfill permitted to receive this material. Because any known contaminants were most likely mitigated during the conversion of the railroad to the current uses, the site has been assigned a Low risk rating.	Low
69	Sunniland Pipeline	Previous reports	Within and/or near	Petroleum	*Although this site was discussed in the July 2018 Contamination Screening Evaluation and Pond Siting Report, it was not assigned a risk rating. Therefore, it is considered a new contamination site for this evaluation.	Although discussed in the 2018 CSER, the pipeline was not identified as a contamination site or assigned a risk rating. Therefore, for this report it is considered a new contamination site. A former petroleum pipeline easement (Sunniland Pipeline) was reported to parallel the SR 29 ROW in the Immokalee/Sunniland Area. Reportedly, the pipeline has been abandoned and presumed emptied of petroleum product. It was noted that the remaining "flow lines" were flushed by Exxon in 1998, despite a lack of documentation and the removal of the pipeline. As above ground markers have been removed or not visible (overgrown), the location of the pipeline could not be determined during the 2018 field reviews. If encountered, the contractor must assume that residual petroleum product remains within the pipeline and, if compromised, may result in a discharge. The pipeline appears to intersect portions of the northern and southern sections of the project area. Based on the proximity of the petroleum pipeline, potential for pipe degradation, potential for a history of discharges associated with pipelines in the area, and uncertainty of pipeline status, the Sunniland Pipeline has been assigned a Medium risk rating and further construction activities should be coordinated with the DCIC.	Medium
70	CDC #1 OG 379 Dryhole	Aerials	450 feet west	Petroleum, metals	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	This site was identified on the FDEP Map Direct (Oil and Gas) database as a prospective oil well located within the "Wildcat" oil field. The dry well was drilled to a measured depth of 11,810 feet bls in 1967 and was plugged (with a welded cover) in 1968. Although not identified as a producer oil well, there is a potential for petroleum-based drilling fluids to have been introduced and disposed at/near the reserve pit area, as well as lesser amounts of petroleum constituents mixed with salt water from the borehole itself. Petroleum-based and mineral oil-based drilling fluids and reserve pit waste contaminants (petroleum and metals including lead, arsenic, chromium, fluoride, lead and zinc) are typically associated with oil wells. Although sought, this well was not observed during the 2020 site reconnaissance. Given the separation distance, this site is assigned a risk rating of Low.	Low
71	Cell Tower 2829 SR 29	Aerials	470 feet west	Petroleum	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	Aerial photographs first depict the cell tower in 2004. No regulatory files were found. Typically, cell towers include at least one generator powered by either diesel fuel or propane. Given the separation distance, this site is assigned a risk rating of No.	No

	Table 3 – Contamination Sites Risk Ratings								
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating		
72	Howard Fertilizer Spill	ERIC_15319	Within SR 29 ROW	Groundwater: arsenic, iron, and manganese. Soil: None. Surface Water: Iron. Sediment: None.	*Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	The FDEP Office of Emergency Response Incident Report (Incident No. 2019-31-64280) states a Howard Fertilizer truck discharged 500-gallons of liquid fertilizer onto SR 29 (including grassy ROWs on both sides of the road) on October 3, 2019. Although no pooling was noted, the Fire Department reported 20-foot by 30-foot stains on each side of SR 29. Additionally, vehicles had driven through the spill prior to the arrival of the Fire Department which extended the liquid fertilizer to a "500-700" foot area of SR 29 (CSER Appendix B). Media affected included impervious surface (SR 29), soil, groundwater, and surface water (west ditch). The most recent site assessment report (Site Assessment Report dated September 14, 2022) states roadway construction activities performed recently (prior to March 2021) included the spill area, and the two temporary groundwater monitoring wells were apparently destroyed. The wells were reinstalled after the roadway construction activities were completed in 2022. Groundwater, surface water, and sediment samples were collected on July 20, 2022. Laboratory results exceeded GCTLs. Measured depth of shallow groundwater ranged from 3.90 to 4.52 feet bls. Groundwater flow was reportedly to the north-northeast. According to the report, the iron concentration of 698.0 ug/L in the surface water sample collected from the West Ditch exceeds the background concentration of 171 (I) ug/L. Sample locations are depicted on figures included in the report (CSER Appendix B). The following is a brief summary of FDEP's review (letter dated October 25, 2022) of the Site Assessment Report dated September 14, 2022: 1. FDEP recommends determining another source for the groundwater contamination (arsenic, iron and manganese), or perform a background concentration study to determine if the contaminants are naturally occurring. 2. Sediment sampling in the west ditch is no longer required since laboratory results were below the Threshold Effect Concentrations (TECs) identified in the Department's Development a	High		

Table 3 — Contamination Sites Risk Ratings							
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
73	Arsenic NW corner of SR 29/SR 82	Previous report	Adjacent northwest	Arsenic	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	The arsenic RDE SCTL exceedance of 8.6 mg/kg at SB-1 (coordinates 26.48585, 81.4348) was identified in the Final Level II Field Screening Report dated July 6, 2017 (FPID 417878-4-52-01), the adjoining north project. The current location is within the ROW which was redeveloped (and mitigated with blending/mixing of soils) in 2021/2022 as a roundabout at the intersection of SR 29/SR 82. Approximately 2,600 feet of SR 29 was widened (redeveloped) south of the roundabout at the time. The depth of the composite sample (SB-1) was from existing grade to two feet below existing grade. The concentration exceeds the RDE SCTL of 2.1 mg/kg but is below the CIDE SCTL of 12 mg/kg. Given this vicinity was redeveloped and potential arsenic impacts were mitigated, this site is assigned a risk rating of Low.	Low
74	Row Crops 3637 SR 29	Aerial photographs, Site reconnaissance	Adjacent west	Pesticides, Herbicides	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	This site was depicted on aerial photographs from 1993 to 2022. No mix/load areas, diesel powered irrigation pumps, petroleum tanks or hazardous materials were observed onsite during site reconnaissance or during the review of historical aerial photographs. Given the proximity, and separation by a ditch and woods, this assigned a risk rating of Low.	Low

Table 4: Pond Site Risk Ratings						
Pond ID	Rating					
Pond 501B	Medium					
Pond 502A (PD&E Pond 31-C2	Medium	Risk Rating: Given the location on the airport property and within the Immokalee Airport Area Brownfield, Pond 501B is assigned an initial risk ranking of Medium. A small portion of Pond 502A was previously identified as Pond 31-C2 and was assigned a risk rating of Medium in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018 since it was located within a citrus grove. Given the footprint expansion, aerial photographs depict woods, and a ditch in the southwest corner, and groves in eastern area. FA-15 – This site contains a former staging area within an existing citrus grove. No issues were discovered during a March 2018 field review during preparation of the 2018 CSER. The site's rating was increased to Medium due to the presence of the citrus grove where surface and subsurface soils may contain application levels of pesticides and herbicides. Site 56 – This site is rated medium due to an open out-of-compliance case according to a Compliance Assistance Offer (CAO) letter dated August 28, 2023. An inspection on 6/12/2023 stated the facility is no longer in operation, but holds an active NPDES Multi-Sector Generic Permit (MSGP) (FLR05H006). To close the permit, the facility will have to remove all potential pollutant sources (pile of tires and old auto parts) to be in compliance. Risk Rating: Due to groves located within the pond boundaries, and compliance concerns with piles of tires and old auto parts, Pond 502A retains a risk rating of Medium.				
Pond 503B (PD&E Pond 32-C1R/Pond 32-C2)	Low	A small portion of Pond 503B was previously identified as Pond 32-C1R / Pond 32-C2 in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018. It was assigned an initial risk rating of Low with no contamination concerns noted. Pond 503B was not evaluated in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020. Given the footprint expansion, aerial photographs depict a grassy field, a dirt trail, and woods in the northwestern area. No other changes were noted. Risk Rating: Due to an existing canal/buffer between the southeastern pond boundary and an existing citrus grove, Pond 503B retains a risk rating of Low.				
Pond 601A	No	Pond 601A was previously evaluated in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020. It was assigned a risk rating of No due to to of contamination concerns. For this evaluation, the footprint of Pond 601A was only slightly modified. No other changes were noted. Risk rating: Pond 601A retains a risk rating of No.				
Pond 602B (PD&E Pond 35)	Medium	Pond 602B was previously identified as Pond 35 in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018. It was assigned an initial risk rating of Low with no contamination concerns noted. As a result of the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020, the risk rating was changed to Medium given the proximity to Site 69 - Sunniland Pipeline. For this evaluation, the footprint remained the same. No changes were noted. Risk rating: Given the proximity to Site 69 - Sunniland Pipeline, Pond 602B retains a risk rating of Medium.				
Pond 603/604B	Medium	Pond 603/604B was not evaluated in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018. It was previously assigned a risk rating of Medium in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020 given the proximity to Site 69 - Sunniland Pipeline. For this evaluation, the footprint remained the same. No changes were noted. Risk rating: Given the proximity to Site 69 - Sunniland Pipeline, Pond 601B retains a risk rating of Medium.				
Pond 605A (PD&E Pond 39)	Medium	This pond alternative was previously identified as Pond 39 in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018. It was assigned an initial risk rating of Medium based on historical use as groves. The risk rating of Medium was retained in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020, given the use as groves, and the added rationale of the proximity to Site 69 - Sunniland Pipeline. For this evaluation, the footprint remained the same. No changes were noted. Risk rating: Given the use as groves, and the proximity to a buried petroleum pipeline, Pond 605A retains a risk rating of Medium.				

Table 4: Pond Site Risk Ratings						
Pond ID	Risk Rating	Comments				
Pond 606A	Medium	Pond 606A was previously assigned a risk rating of No in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020 given the lack of contamination concerns. For this evaluation, the footprint remained the same. Updated information since the 2020 evaluation includes: Site FA-21 - Florida Power & Light (Former Barron Collier Partnership, Parcel 000650000003, 3350 SR 29) solar farm is located 200 feet east of Pond 606A. Given the separation distance, this site is not a contamination concern to Pond 606A. Site 72 - Howard Fertilizer Spill: A groundwater contamination plume (arsenic, iron, and manganese) located on both sides of the SR 29 ROW has not been delineated horizontally or vertically; and iron exceeds the surface water criteria in the west ditch. The spill is located 220 feet northeast of Pond 606A, within the SR 29 ROW, and reportedly affected a "500-700" foot area since vehicles continued driving through after the spill occurred. Although assessment is not complete, groundwater remediation efforts (collection of 5,000-gallons of groundwater from each of the two recovery wells in the source area) are in progress. An FDEP email dated January 3, 2024 states the FDEP granted a time extension for completion of this task/report until March 18, 2024. Risk rating: Given the open discharge associated with Site 72 is located within 500 feet and may affect NPDES permitting if dewatering is required, and un-delineated groundwater and surface water plumes, the risk rating for Pond 606A is changed from No to Medium.				
Pond 607A	Medium	Pond 607A was previously evaluated in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020. Although row crops/plowed field were located within Pond 607A, since concentrated contamination concerns (maintenance/storage buildings, mix/load areas, tanks, etc.) were not identified, it was assigned a risk rating of Low. For this evaluation, the footprint remained the same. Updated information since the 2020 evaluation includes: Site 74 – Row Crops were depicted within the limits of Pond 607A and adjoining west on aerial photographs from 1993 to 2022. No mix/load areas, diesel powered irrigation pumps, petroleum tanks or hazardous materials were observed onsite during site reconnaissance or during the review of historical aerial photographs. Site FA-21 - Florida Power & Light (Former Barron Collier Partnership, Parcel 000650000003, 3350 SR 29) solar farm is located 200 feet east of Pond 607A. Given the separation distance, this site is not a contamination concern to Pond 607A. Risk rating: Given the use as row crops (Site 74), Pond 607A is changed from Low to Medium.				

5.0 Conclusions and Recommendations

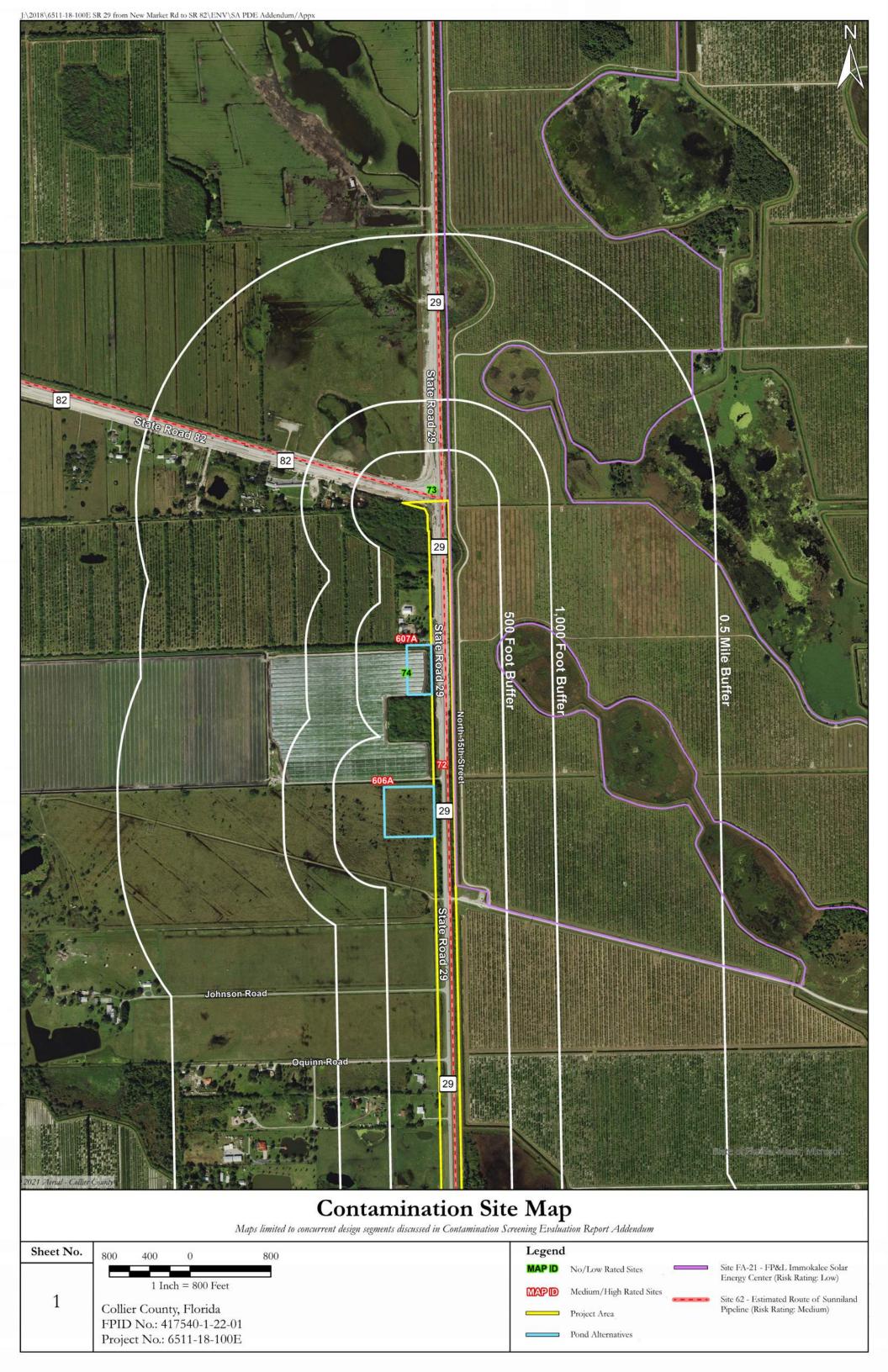
A total of 50 mainline contamination sites were assessed as part of this CSER Addendum. A summary of the risk ratings assigned is provided in **Table 5**.

Table 5 – Contamination Site Risk Rating Summary					
High	Medium	Low	No		
4	18	23	5		

A total of 9 pond sites were evaluated as part of this CSER Addendum. A summary of the risk ratings assigned is provided in **Table 6**.

Table 6 – Pond Site Risk Rating Summary						
High Medium Low No						
0	7	1	1			

Based on the conclusions of the study and the risk ratings noted above, the following recommendations are made for this project:


- Additional information may become available or site-specific conditions may change from the time this report was prepared and should be considered prior to acquiring ROW and/or proceeding with roadway construction.
- No further evaluation is recommended for the contamination sites or pond sites assigned risk ratings
 of No or Low as none are expected to have contamination involvement.
- A total of 29 locations were assigned High or Medium risk ratings (4-High rated and 18-Medium rated contamination sites; 7 Medium rated pond sites). These locations were identified within the study area and should be considered for Level II testing. Level II testing is performed to assess the presence/absence of contamination, identify impacts to construction, and to develop site-specific recommendations. Level II activities are performed by FDOT's CAR contractor and should be completed prior to construction. For projects with new (proposed) ROW, Level II activities should be completed prior to ROW acquisition. Typically, they are performed during the design phase and can include soil borings, monitoring well installation, soil and groundwater sampling, laboratory testing, OVA screening, boundary surveys, additional file research, and GPR surveys. Further evaluation and Level II testing, at the discretion of the DCIC, is recommended for the following:
 - Petroleum: Sites FA-12, 22, 26, 28, 30, 38A, 38C, 38E, 38F, 38G, 39, 69, Ponds 602B, 603/604B, and 605A were risk rated Medium for petroleum concerns. Level II activities may include OVA screening, and the collection of soil samples for laboratory analysis. Laboratory analysis of soil samples may include one or more of the following: Total Recoverable Petroleum Hydrocarbons (TRPH) by the FLPRO Method, Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270, and volatile organics by EPA Method 8260. Additionally, Sites 28 and 39 should also include testing for lead by EPA Method 6010; and Sites 22, 38A, 38D, 38E, 38F, and 38G should include

Resource Conservation and Recovery Act (RCRA) 4 metals (arsenic, cadmium, chromium, and lead), and PCBs using EPA Method 8082 for waste oil and solvents. Detections in the soil above the regulatory standard may require additional soil and/or groundwater samples for delineation purposes. Site 69, and Ponds 602B, 603/604B, and 605A were risk rated Medium based on proximity to Site 69 – Sunniland Pipeline. The precise location of the buried petroleum pipeline was not reasonably ascertainable. The pipeline should be presumed to contain petroleum products and caution should be exercised during construction activities. GPR and assessment tasks are warranted prior to construction to identify the precise location of the pipeline and any soil/groundwater impacts.

- Herbicides/Pesticides: for Sites FA-15, FA-16, FA-17, FA-18, FA-19, 22, Ponds 502A, 605A, and 607A, soil analytical testing may include arsenic by EPA Method 6010, Organochlorine Pesticides by EPA Method 8081, Organophosphorus Pesticides by EPA Method 8141, Chlorinated Herbicides by EPA Method 8151, EDB by EPA Method 504.1, and PCBs by EPA Method 8082. Detections in the soil above the regulatory standard may require additional soil samples for delineation purposes and groundwater samples.
- Pesticides/Metals: for Site 22 Winfield Solutions, soil analytical testing may include Organochlorine Pesticides by EPA Method 8081, Organophosphorus Pesticides by EPA Method 8141, RCRA 8 (arsenic, barium, cadmium, chromium, lead, selenium, silver and mercury), EDB by EPA Method 504.1, and metals by EPA Method 6010 and EPA Method 7471.
- Fertilizer: Site 72 Howard Fertilizer Spill, groundwater testing should include arsenic, iron, and manganese by EPA Method 6010 and surface water in the west ditch for iron by EPA Method 6010.
- Solvents and Waste Oil: for Sites FA-14, 32 and 33, Level II activities may include OVA screening, and the collection of soil samples for laboratory analysis including TRPH by FL-PRO Method, PAHs by EPA Method 8270, and volatile organics by EPA Method 8260, RCRA 4 metals (arsenic, cadmium, chromium, and lead), and PCBs using EPA Method 8082.
- Level II testing costs are estimated at \$2,000 to \$10,000 per site. If impacts are identified during Level
 II testing, Level III support activities such as source removal and/or dewatering may be required
 during construction and are estimated at \$50,000 to \$100,000 per site.
- Once final design plans are available, additional review is recommended in consideration of dewatering operations that may be necessary under the NPDES Generic Permit for Stormwater Discharges from Large and Small Construction Activities. Verification testing may be warranted for contamination issues within 500 feet of the dewatering area.

CSER APPENDIX A

Contamination Site Map

CSER APPENDIX B

Supplemental Information

Site FA-13 – Immokalee Fire Control District

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Electronic Submission Receipt

Termination of Generic Permit for Stormwater Discharge from Large and Small Construction Activities and Dewatering Operations General Permit - Confirmation

The Florida Department of Environmental Protection has received and processed your *National Pollutant Discharge Elimination System Stormwater Notice of Termination*. This letter acknowledges that your coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities and Dewatering Operations *Generic Permit for Stormwater Discharge Associated with Generic Permit for Stormwater Discharge from Large and Small Construction Activities and Dewatering Operations* (CGD) has been terminated.

Facility ID Facility Name

FLR20ET74 Immokalee Fire Station 30

Facility Address

510 New Market Rd E Immokalee, FL 34142 3439 **Permit Type**

CGD

Please be advised of the following:

- This letter does not release you from liability for any previous violations of the conditions of the CGD.
- If industrial activity continues to occur at the above-referenced facility after the date of this letter, stormwater discharges are unlawful unless covered by either (1) a new permit for stormwater discharge associated with industrial activity (individual or generic) or (2) a conditional no exposure exclusion from NPDES Stormwater permitting.

Please retain a copy of this confirmation for your records.

If you have any questions concerning this acknowledgment letter, please contact the NPDES Stormwater Notices Center at (866) 336-6312.

FLORIDA DEPARTMENT OF Environmental Protection

Ron DeSantis Governor

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Receipt for Submission

For:

Michael Valin

Facility ID: FLR20ET74

Facility Address: 510 New Market Rd E Immokalee, FL 34142 3439

- Notice of Termination for Generic Permit for Stormwater Discharge Construction Activities and Dewatering Operations from non-contaminated sites

COUNTY: Collier

The department acknowledges receipt of your Notice of Termination (NOT) for the above referenced Generic Permit and coverage has been terminated. Please note that for sites discharging to an MS4, the Operator must send a copy of the NOT or this acknowledgement of termination within 7 calendar days of receipt to the operator of the MS4. If you have any questions, please contact the NPDES Stormwater Notices Center at (866) 336-6312 or NPDES-stormwater@dep.state.fl.us.

Attachment: Notice of Termination for Generic Permit for Stormwater Discharge Construction Activities and Dewatering Operations from non-contaminated sites

From: <u>tankregistration</u>

To: accounting@immfire.com; mchoate@immfire.com

Cc: tankregistration; jbauer@immfire.com; FTM Tanks Cleanup

Subject: FAC ID# 9819637 New Fuel Tanks Immokalee Fire Control District

Date: Wednesday, July 19, 2023 11:03:40 AM

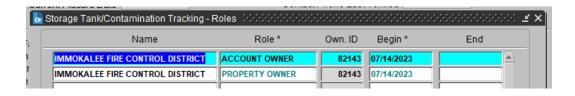
Attachments: SKM_C250i23071213270.pdf

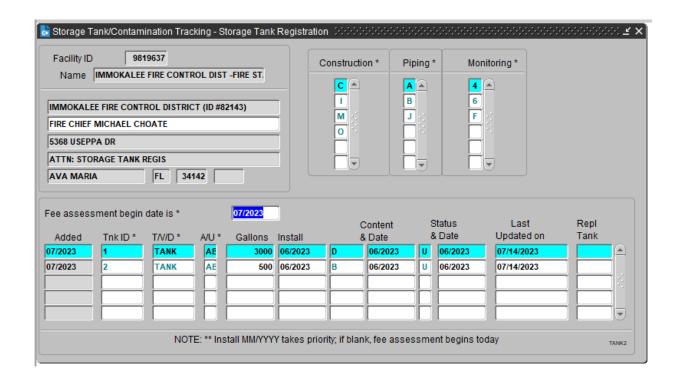
image002.png image003.png image004.png

Hello Michael,

Per your request the new Facility ID # 9819637 has been assigned to Immokalee Fire Control Dist - Fire Station #30 at 510 New Market Road E, Immoakalee, FL 34142.

Also, Joshua per our telephone conversation please note tank #2 in process of being removed due to regulations request tanks 550 more to be registered once updated contact you advising same.


Rulemaking Authority 376.303 FS. Law Implemented 376.303 FS. History-New 6-21-04, Amended 1-11-17, 10-17-19.


62-762.301 Applicability.

- (1) General Requirements.
- (a) The requirements of this chapter, unless specified otherwise, apply to owners and operators of facilities, and owners and operators of storage tank systems with individual storage tank capacities greater than 550 gallons, that contain or contained regulated substances. Storage tank systems or system components installed after January 11, 2017, shall comply with this chapter upon installation. Unless otherwise specified in this chapter, storage tank systems or system components installed before January 11, 2017, are subject to the applicable Reference Standards listed in the Department's storage tank rules that were in effect at the time the storage tank systems or system components were installed.

Thank you

Facility ID County	9819637 Facility Status OPEN 11 COLLIER District SD	Create Date 07	7/14/2023
Name *	IMMOKALEE FIRE CONTROL DIST -FIRE STATION #30	Addr Update	
Address *	510 NEW MARKET ROAD E	Comments?(Y/N) N	
Address2		Account Status INVOICE	E 14-JUL-2023
City	IMMOAKALEE FL 34142	ASTC 1	
Facility Contact	Name DEREK NEUMAN Facility Contact Phone	239-657-2111 Ext	Phone #
	ity Date 07/14/2023 Contact Phone Verified By	HUDSON C	Changes Verified?
Current Placa	rd Date Contact Phone	Last Verified 07/14/2023	
24 HR Eme	ergency Contact Name - Phone DEREK NEUMAN	- 239-986-6306 Ext	
Facility Type * Financial Resp	G STATE GOVERNMENT	DEP Contract Ov	wned * P
Insurance Comp	Coverage Per	riod [
		Effective	
Cleanup Status		Lifective	
Cleanup Status Owner Name	IMMOKALEE FIRE CONTROL DISTRICT		CCT OWN
	IMMOKALEE FIRE CONTROL DISTRICT 5368 USEPPA DR		CCT OWN 82143
Owner Name		Primary Role A	
Owner Name Address	5368 USEPPA DR	Primary Role A	
Owner Name Address Address2	5368 USEPPA DR ATTN: STORAGE TANK REGIS	Primary Role A	82143 /14/2023
Owner Name Address Address2 City/St/Zip	5368 USEPPA DR ATTN: STORAGE TANK REGIS AVA MARIA, FL 34142	Primary Role A(Owner ID# Begin Date 07	82143 /14/2023

Cynthia Hudson Division of Waste Registration Cynthia.Hudson@Floridadep.gov Office: 850.245.8981

From: Joshua Bauer <jbauer@immfire.com>
Sent: Wednesday, July 12, 2023 2:16 PM

To: tankregistration <tankregistration@dep.state.fl.us> **Subject:** New Fuel Tanks Immokalee Fire Control District

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email. Please see the attached form for our new fuel tanks at the Immokalee Fire Station 30 at 510 New Market Road in Immokalee Fl 34142

Thank you, Joshua D. Bauer, CDM Battalion Chief of Administration Office: 239-657-2111, Ext 341 Cell: 239-675-1601

Information contained in this email is subject to public records release pursuant to Florida Statute 119. This message, together with any attachments, is intended only for the addressee. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, use or any action or reliance upon this communication is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately by return e-mail, and delete the message and any attachments.

DEPARTMENTAL PROPERTY.

Florida Department of Environmental Protection

Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400

Division of Waste Management

Petroleum Storage Systems

Storage Tank Facility Installation Site Inspection Report

Facility Information:

Facility ID: 9819637 County: COLLIER Inspection Date:08/21/2023

Facility Type: G - State Government

Facility Name: IMMOKALEE FIRE CONTROL DIST -FIRE STATION #30 # of inspected ASTs: 1

510 NEW MARKET ROAD E

IMMOAKALEE, FL 34142 Mineral Acid Tanks: 0

No Signature

Immokalee Fire

USTs: 0

Latitude: 26° 25' 15.8794" Longitude: 81° 24' 37.987"

LL Method: DPHO

Inspection Result:

Result: In Compliance

Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

Storage Tank Program Office and Phone Number

like Minkler

Michael G Winkler James Eidel

Inspector Name Representative Name

Inspector Signature Representative Signature

Principal Inspector

COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

Financial Responsibility:

Financial Responsibility: INSURANCE

Insurance Carrier: ACE AMERICAN INSURANCE COMPANY

Effective Date: 10/12/2022 Expiration Date: 10/12/2023

Facility ID: 9819637

Completed System Tests

Type	Date Completed	Results	Reviewed	Next Due Date	e Comment
Annual Operability - Overfill Protection	06/21/2023	Passed	08/23/2023	06/21/2024	Overfill alarm tested annually
Annual Operability - Release Detection	06/21/2023	Passed	08/23/2023	06/21/2024	Interstice gauge tested annually.
Integrity Test - Dispenser Sump	06/21/2023	Passed	08/23/2023	06/21/2023	Dispenser pan tested at startup.
Integrity Test - Single-walled Spill Bucket	06/21/2023	Passed	08/23/2023	06/21/2023	Tested at startup
Tank Tightness Test	06/21/2023	Passed	08/23/2023	06/21/2023	Tank tightness at startup.

Inspection Comments

08/23/2023

Two UL 2085 tanks are installed here. DW Modern Welding Fireguard. 3K gallon and (unregulated) 500 gallon DW.

Both tanks have a spill bucket or fill cabinet, and are tight filled with overfill prevention valves and audible overfill (OPW) alarms. Tanks have "jar" style Morrison Bros. sight glass interstice indicators. Both tanks have solenoid valves to steel AG piping to a single split dispenser with diesel and regular unleaded.

The tanks have 704 stickers and are identified as to contents at the fill areas.

PSR performed both the tank and BOI/ interstice integrity testing, hydrostatic testing of dispenser pan and fill areas, interstice indicators, and audible alarms. Test data is attached.

Inches to gallon charts are in the facility Tanks book. The inches to gallons chart and the monthly release detection requirements were reviewed with James Eidel at the time of the inspection.

Attachment Documents

- 2023-08-23 submittal, Fireguard 2085 AST
- 2023-08-23 testing

Inspection Photos

Added Date 08/23/2023

2023-08-21 ASTs overview

Added Date 08/23/2023

2023-08-21 unregulated 500 gal AST. OPV

Added Date 08/23/2023

2023-08-21 gas SB with quick connect

Added Date 08/23/2023
2023-08-21 DSL fill cabinet, overfill alarm

Added Date 08/23/2023 2023-08-21 tank placard

Added Date 08/23/2023

Added Date 08/23/2023 2023-08-21 interstice gauge

Added Date 08/23/2023 2023-08-21 topside components

Facility ID: 9819637

Added Date 08/23/2023

2023-08-21 DSL fill cabinet

Added Date 08/23/2023
2023-08-21 single dispenser behind bollards

Added Date 08/23/2023

2023-08-21 E stop, fire extinguisher

Added Date 08/23/2023 2023-08-23 AST grounded

Site 26 – Combs Oil Co Immokalee Bulk Facility (also known as Balgas, Combs Oil Co Immokalee Truck Stop, and N & R Gas Station)

DEPARTMENTAL DECILE

Florida Department of Environmental Protection

Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400

Division of Waste Management

Petroleum Storage Systems

Storage Tank Facility Routine Compliance Site Inspection Report

Facility Information:

Facility ID: 8839176 County: COLLIER Inspection Date:10/11/2023

Facility Type: D - Bulk Storage Facility

Facility Name: COMBS OIL CO IMMOKALEE BULK FACILITY # of inspected ASTs: 0

525 E MAIN ST

IMMOKALEE, FL 34142 Mineral Acid Tanks: 0

USTs: 4

Latitude: 26° 25' 5.0" Longitude: 81° 24' 40.0" LL Method: DPHO

Inspection Result:

Result: Major Out of Compliance

Signatures:

Principal Inspector

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

Storage Tank Program Office and Phone Number

Jay Standiford Doug Ballard

Inspector Name Representative Name

Inspector Signature Representative Signature

COLLIER COUNTY SOLID & HAZ WASTE MGMT DIV Combs Oil

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

Delivery Driver

Financial Responsibility: Overdue

Financial Responsibility: INSURANCE

Insurance Carrier: MT. HAWLEY INSURANCE CO

Effective Date: 09/12/2021 Expiration Date: 09/12/2022

Findings:

No Training Certificates are Available.

Completed System Tests

Type	Date Completed	Results	Reviewed	Next Due Date	e Comment
Annual Operability - Line Leak Detector	06/02/2020	Passed	10/26/2021	06/02/2021	The Diesel LLD tested pass. Other LLDs are missing.
Annual Operability - Release Detection	06/02/2020	Passed	10/26/2021	06/02/2021	The Veeder Root must be tested annually.
Annual Operability - Release Detection	06/02/2020	Passed	10/26/2021	06/02/2021	Interstice vacuum gauges are to be tested annually.
Integrity Test - STP Sump	05/14/2019	Passed	10/26/2021	05/14/2022	STP sumps are tested every 3 years.

Violations:

Type: Violation
Significance: SNC-A
Rule: 62-761.420(2)

Violation Text: No financial responsibility instrument or expired instrument for > 180 days.

Explanation: No financial responsibility maintained.

Corrective Action: Please obtain financial responsibility (storage tank pollution liability insurance or other

mechanism) and associated FDEP CFR Forms and email all associated documents to the

Inspector within 90 days of the inspection date.

Type: Violation Significance: Minor

Rule: 62-761.800(1)(c), 62-761.800(1)(d)4

Violation Text: Out of service storage tank systems not tested annually for operability or interstice and

liquid level not monitored annually.

Explanation: Facility owners and operators of out-of-service storage tank systems shall monitor the

interstice and the liquid level in the storage tank annually but not to exceed 12 months, unless the tank system contains no regulated substances. Records of these inspections shall be maintained for three (3) years thereafter. In the event that liquid in excess of one inch, or 0.3 percent by weight, in the storage tank other than condensate in the interstice is discovered, facility owners and operators must follow the procedures for incidents pursuant

to Rule 62-761.430, F.A.C.

The following was observed/noted:

-1R1 12K DSL UST primary compartment has 2 inches liquid.

-4R1 5K PUL UST primary compartment has 4 inches liquid.

-Annual visual inspections not performed.

-Annual release detection not performed and all four (4) UST vacuum gauges were not visually inspected (during TCI) to verify operation as they were down in the sumps (confined

space).

Corrective Action: Within 90 days of the inspection date:

-Perform the first annual visual/release detection inspection of the OOS UST system (visual inspection of STP sumps, sensor, and stick each primary compartment sumps then record liquid level) and then verify UST's are under vacuum. This must then be performed annually

thereafter for the entire time the facility is registered as OOS.
-Submit an INF for both UST's that have >1 inch liquid in them.

-Remove excess liquid in DSL & PUL UST's to less than 1 inch and provide associated

record documenting liquid was removed and properly disposed of if determined to be PCW. -Verify all UST's are under vacuum as they are required to be per FDEP EQ. If they are not

under vacuum, then an INF must be completed and an investigation performed. The same INF can be completed for both liquid in the UST's and the UST's not holding vacuum (only if vacuum is not maintained) for interstitial monitoring.

Please submit all associated documentation to the Inspector via email within 90 days of the inspection date.

Attachments:

Added Date 10/18/2023

2023-10-11 TCI 2 Inches Liquid in DSL Primary

Added Date 10/18/2023

2023-10-11 TCI 4 Inches Liquid in PUL Primary

Existing Violations:

Type: Violation Significance: SNC-B

Rule: 62-761.500(7)(b), 62-761.500(7)(b)1., 62-761.500(7)(b)2., 62-761.500(7)(b)3.

Violation Text: Overfill protection not provided as required. This violation may lead to Placard Revocation

and Delivery Prohibition.

Explanation: There is a high level alarm that is tested annually. However, if the only alarm is at the

Veeder Root panel inside the building it may not be heard by the delivery driver. The designated overfill device must be tested for proper operation annually. As an alternative, overfill valves may be tested annually; however, they may be difficult to test with the remote

fill piping.

Corrective Action: Install a high level alarm that alerts the transfer operator when the tank is no more than 90

percent full. The alarm should be located so that is can be heard by the delivery person filling the tank(s). Or provide test records of another device (overfill valves, etc). Send

documentation to the County.

Violation Comments:

10/21/2021

Any overfill alarm occurs in the building, not allowing a delivery driver to hear an overfill condition in two of the tanks, The other two tanks (super unleaded and diesel) don't have working probes at all and no overfill alarm is even possible.

This violation was first identified in August of 2019 and the facility is referred to FDEP for Enforcement.

10/18/2023

The super unleaded and DSL UST's still don't have working probes at all and no overfill alarm is even possible. No corrective actions have been performed since 10/21/2021.

Type: Violation Significance: SNC-B

Rule: 62-761.700(1), 62-761.700(1)(a), 62-761.700(1)(a)1, 62-761.700(1)(a)2

Violation Text: Not repaired or isolated component or piping which has not caused a discharge or release.

Explanation: Repair or replace diesel and premium probes. They are not functioning.

Corrective Action: Repair or replace diesel and premium probes at this time.

Violation Comments:

10/18/2023

No record provided or work not performed to replace/repair DSL and PUL probes.

Type: Violation Significance: Minor

Rule: 62-761.405(3)

Violation Text: Incident Notification Form (INF) not received in a timely manner.

Explanation: The diesel interstice vacuum appears to read zero psi.

Corrective Action: Submit an Incident Notification Form to Michael.Winkler@CollierCountyFL.gov and

investigate, repairing or replacing the gauge as necessary.

Violation Comments:

10/18/2023

The facility has not submitted the associated INF.

Type: Violation Significance: Minor

Rule: 62-762.601(7), 62-762.602(7)

Violation Text: Annual operability testing of release detection systems not completed.

Explanation: Existing release detection systems require an annual test. The interstice vacuum gauges,

Veeder Root, and line leak detector(s) must be tested annually.

Corrective Action: All release detection devices shall be tested annually at intervals not exceeding 12 months

to ensure proper operation. The test must either simulate an actual alarm condition or shall be conducted according to manufacturer's specifications, and shall include, at a minimum, a

determination of whether the device operates as designed.

Violation Comments:

10/18/2023

Annual operability testing records were not provided/available as the system was registered as OOS.

Site Visit Comments

10/11/2023

A TCI was performed on 10/11/2023.

Inspection report emailed to Dennis Combs.

Inspection Comments

10/18/2023

SW steel spill containment visually inspected.

All STP and sensor/monitoring sumps visually inspected.

All steel piping and STP's visually inspected.

All piping entry boots inspected.

DWUP secondary not open in STP sumps (shrader valves not open or test boots not pulled back).

All primary compartments stuck.

1R1 12 K DSL DW UST:

STP sump dry and Monitoring sump dry. 2 inches liquid in primary compartment UST Vacuum gauge reading not verified

2R1 12K E10 DW UST:

STP sump dry and Monitoring sump dry.

No liquid in primary compartment.

UST Vacuum gauge reading not verified

3R1 10K DSL DW UST:

<1 inch liquid in STP sump and Monitoring sump dry.

Primary compartment dry, no liquid present.

UST Vacuum gauge reading not verified

4R1 5K PUL DW UST:

< 1 inch liquid in STP sump, Monitoring sump dry.

4 inches liquid in primary compartment.

UST Vacuum gauge reading not verified.

Release detection:

UST's are lined with Petrofuse Tank Lining System (EQ-668). Interstitial release detection is by continuous vacuum.

If vacuum is not held, then this is considered an Incident.

SPILL CONTAINMENT:

SW Steel with four (4) fill ports

PIPING:

DWUF

Exposed fiberglass piping. Please ensure this is continually painted with Gel Coat to prevent fiberglass UV degradation. Please also note that exposed fiberglass piping is flammable.

Bulk Fuel Dock was not inspected.

VRTLS is present but not recording data.

Acronyms:

ALLD- Annual Line Leak Detection

AO- Annual Operability

AOC- Area of Concern

AST- Aboveground Storage Tank

ATG- Automatic Tank Gauge

API- American Petroleum Institute

ASWP- Aboveground Single Walled Piping

AV- Ambient Vent

BOI- Breach of Integrity

CAO- Compliance Assistance Offer

COI- Certificate of Insurance

CFR- Certificate of Financial Responsibility

CP- Cathodic Protection

DSLH-Diesel Hose (Dispenses only diesel)

DF- Dike Field

DSL- Diesel

DSLH- Diesel Hose

DW- Double Walled

DWF- Double Walled Fiberglass

DWSB- Double Walled Spill Bucket

DWUF- Double Walled Underground Fiberglass

DWUP- Double Walled Underground Piping

DPVR- Dual Point Vapor Recovery

DS- Dispenser Sump

ELLD- Electronic Line Leak Detection

EF- Ethanol Free

ERD- Electronic Release Detection

EV- Emergency Vent

F.A.C.- Florida Administrative Code

FDEP- Florida Department of Environmental Protection

FIRST- Florida Inspection Reporting for Storage Tanks

FKA- Formerly Known As

FG- Fiberglass

FP- Fill Port

FR- Financial Responsibility

FRP- Fiberglass Reinforced Plastic

GPH- Gallons Per Hour

IIR- Incident Investigation Report

IS- In Service

K- Thousand (Gallons)

LEL- Lower Explosive Level

LLD- Line Leak Detection

MGAP- Marine Grade Aboveground Piping

MLLD- Mechanical Line Leak Detection

MUL- Mid Grade Unleaded

MVI- Monthly Visual Inspections

MWP- Man Way Port

NFPA- National Fire Prevention Act

NO- New Oil

OOS- Out Of Service

OPD- Overfill Prevention Device

OPV- Overfill Prevention Valve

PAV- Primary Ambient Vent

PCW- Petroleum Contact Water

PEV- Primary Emergency Vent

PRVC- Pressure Vacuum Cap

PUL- Premium Unleaded

PVC- Poly Vinyl Chloride

RD- Release Detection

RDRL- Release Detection Response Level

REC 90- Recreation 90 Octane

REC 90H- Recreation 90 Hose

RUL- Regular Unleaded

RULH- Regular Unleaded Hose

SB- Spill Bucket

SEV- Secondary Emergency Venting

SHWMD- Solid and Hazardous Waste Management Division

STFR- Storage Tank Financial Responsibility

STRF- Storage Tank Registration Form

STP- Submersible Turbine Sump

SV- Shear Valve

SW- Single Walled

SWSB- Single Walled Spill Bucket

TCAR- Tank Closure Assessment Report

TCI- Storage Tank Compliance Inspection

TIN- Storage Tank Installation Inspection

TXI- Storage Tank Closure Inspection

TK- Tank

TS- Transition Sump

UDC- Under Dispenser Containment

UL- Unleaded

ULH- Unleaded Hose (Dispenses RUL and PUL)

UO- Used Oil UST- Underground Storage Tank VR- Vapor Recovery VRTLS- Veeder Root

Inspector:

Jay

James A. Standiford IV (Jay)
Environmental Specialist I
Hazardous Materials Environmental Compliance
Collier County SHWMD
239-207-0981- Cell
James.Standiford@colliercountyfl.gov

10/19/2023

R21 was registered OOS on 8/1/2020.

1R1 12K DSL was registered OOS on 11/1/2022.

3R1 12K DSL was registered OOS on 11/1/2022.

4R1 5K DSL was registered OOS on 11/1/2022.

Violations cited in the 10-19-2021 inspection report have not been resolved.

This facility was referred to FDEP South District for enforcement on 11/3/2021.

This facility is being referred to FDEP South District for enforcement on 10/25/2023.

Inspection Photos

Added Date 10/18/2023

2023-10-11 TCI Facility Pic

Added Date 10/18/2023

2023-10-11 TCI Facility Pic 2

Added Date 10/18/2023 2023-10-11 TCI PAV's Open

Added Date 10/19/2023 2023-10-11 TCI Exposed Fiberglass Piping

Added Date 10/19/2023 2023-10-11 TCI SW Steel Spill Containment

Added Date 10/19/2023 2023-01-11 TCI VRTLS Panel

From: <u>tankregistration</u>

 To:
 Kellie Wendel; tankregistration

 Cc:
 COMBSOIL@EARTHLINK.NET

 Subject:
 FW: DEP Facility ID: 8839176

Date: Monday, December 12, 2022 2:02:23 PM

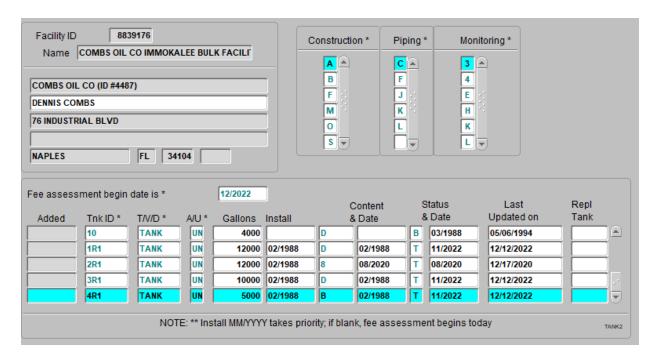

Attachments: FEDP-Immokalee BP.pdf

image001.png

Good afternoon,

Per your request, tank information has been updated as Out of Service.

Thank you.

Laurence Min
Division of Waste Registration
Florida Department of Environmental Protection
Laurence.Min@Dep.State.Fl.Us
Office: 850.245.8840

🐴 Save a tree, please don't print this e-mail unless necessary

From: Kellie Wendel <kwendel.combs@gmail.com>

Sent: Friday, December 9, 2022 10:15 AM

To: tankregistration <tankregistration@dep.state.fl.us>

Subject: DEP Facility ID: 8839176

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Please see attached Storage Tank Facility Registration for ID# 8839176 525 E Main Street, Immoklaee, FI 34142. Combs Oil is filing new registration to show the change in the status of the tanks as out of service. If you have any questions please contact Dennis Combs at (239)774-2666. Thanks, Kellie Wendel, Sec. at Combs Oil Company

Theis, Nichole

From: US - ENE - Team 6 Mail

To: Tarver, Josh

Subject: RE: Combs Oil Company Immokalee Bulk Facility; 525 E. Main St., Immokalee (Collier

County), FL; FAC 118839176, P.O. B8C14B; MDM Project E20815

From: Jeff Morgan < jeff.morgan@mdmservices.com>

Sent: Thursday, July 29, 2021 4:35 PM **To:** Tarver, Josh < <u>Josh.Tarver@wsp.com</u>>

Subject: Combs Oil Company Immokalee Bulk Facility; 525 E. Main St., Immokalee (Collier County), FL; FAC 118839176,

P.O. B8C14B; MDM Project E20815

Hello Josh,

Attached please find the current Health & Safety Plan (HASP) and Remedial Action Interim Report as prepared in accordance with Task 3 of the current P.O. The Task 3 Rate Sheet is also attached. Please let me know if you need anything additional during review.

Thank You

Jeff Morgan, P.G.

Project Manager MDM SERVICES Inc.

• 1055 Kathleen Rd., Lakeland FL 33805

Engineering • Environmental • Construction - A Design Build Company

1055 Kathleen Road, Lakeland, FL 33805. Tel (863)646-9130 Fax (863)648-1106 www.mdmservices.com

July 29, 2021

Mr. Josh Tarver, Site Manager Florida Department of Environmental Protection Petroleum Restoration Program 2600 Blair Stone Rd Tallahassee, Florida 32399-2400

Re: Remedial Action Interim Report

Combs Oil Bulk Plant 525 East Main Street Immokalee (Collier County), Florida FDEP Facility #118839176 FDEP P.O. B8C14B; Task 3

Dear Mr. Tarver,

This correspondence and accompanying Appendices serve as the Remedial Action (RA) Interim Report for the above referenced site, performed in accordance with Task 3 of FDEP Purchase Order B8C14B. The appendices are compiled as follows:

Appendix A

Sheet 1	Site Plan
Sheet 2	VOCs in Groundwater
Sheet 3	TRPHs & Non-Carcinogenic PAHs in Groundwater
Sheet 4	Carcinogenic PAHs in Groundwater
Sheet 5	Water Table Elevation (July 8, 2021)

Appendix B

Table 1	Groundwater Monitoring Well Analytical Summary – VOCs &
	Metals
Table 2	Groundwater Monitoring Well Analytical Summary – PAHs &
	TRPHs
Table 3	Groundwater Elevation Summary

Appendix C

Laboratory Analytical Report, Groundwater Sampling Logs, Field Instrument Calibration Records, Field Notes (July 8, 2021 sampling event)

The results of groundwater sampling as completed on July 8, 2021 pursuant to Task 3 of the current FDEP purchase order are discussed in the following Sections.

Site History

This site is an active bulk fuel storage facility storing unleaded gasoline and vehicular diesel fuel in underground storage tanks (USTs) as follows:

Diesel Fuel – stored in 2 USTs of 12,000 gallon and 10,000 gallon capacity Unleaded Gasoline – stored in 2 USTs of 12,000 gallon and 5,000 gallon capacity

These active USTs are adjacent to each other in a common UST field in the south/central portion of the site, immediately west of above-ground bulk propane storage tanks (see Sheet 1, Appendix A).

Throughout its history, 10 USTs of 4,000 gallon capacity each were formerly utilized to store vehicular diesel fuel at the site. These former USTs were located west of the current UST field, and have been removed.

This site has undergone active remediation as follows:

- In June 2001, a source removal excavation of the former UST field (immediately west of the active USTs) was conducted. A well-point dewatering system was utilized to enable excavation of saturated zone soils. Prior to dewatering, the water table was exposed, by excavation, and a vacuum truck was utilized to "skim" free product from the water table.
- A multi-phase extraction remedial system was utilized at the site from December 2001 through January 2005. This system primarily recovered free product and associated petroleum contaminated groundwater.
- An air sparging/soil vapor extraction (SVE) remedial system was utilized at the site from June 2005 through October 2008. This system was effective at temporarily achieving soil and groundwater cleanup target levels (CTLs); however, various petroleum constituents in the groundwater were detected above CTLs from groundwater samples obtained from monitoring wells in the general vicinity of the active USTs during subsequent post active remediation monitoring (PARM).

Various phases of PARM have been completed since the cessation of active remediation in October 2008, with groundwater sampling for the latest PARM event conducted in June 2020. From this event, TRPH was detected in groundwater samples obtained from monitoring well MW-7R at a concentration of 6,800 ug/L, exceeding the groundwater CTL of 5,000 ug/L. This was the only exceedance of groundwater CTLs from the June 2020 PARM event.

As CTLs were not maintained throughout PARM, additional remedial action was being considered in the general vicinity of the active UST field. The current

FDEP purchase order B8C14B was issued, which included the preparation of a Level 1 Limited Scope Remedial Action Plan (LSRAP) as Task 2. In April 2021, a pre-RAP teleconference was conducted, where various remedial methods were discussed. The use of a micro-carbon based product, such as "PetroFix", was deemed as potentially viable. However, additional groundwater sampling was reasoned to be warranted in order to evaluate current groundwater conditions in the active UST area prior determining the most optimum method for additional remediation. A change order to the purchase order was issued for the groundwater sampling of MWs 5, 6, 7R, 8, 12R, and 28R to determine concentrations of BTEX/MTBE, PAHs, and TRPHs. Further, the change order allowed for determining TRPH fractions for any of the groundwater samples in which TRPH was detected at concentrations exceeding the groundwater CTL of 5,000 ug/L.

Groundwater Sampling

On July 8, 2021, groundwater samples were obtained from MWs 5, 6, 7R, 8, 12R, and 28R to determine concentrations of BTEX/MTBE, PAHs, and TRPHs. The laboratory was instructed to determine concentrations of TRPH fractions for any groundwater sample in which the TRPH CTL was exceeded. The laboratory analytical report, groundwater sampling logs, field instrument calibration records, and field notes for this sampling event are compiled in Appendix C. The laboratory analytical results are summarized in Tables 1 and 2 (Appendix B) and are depicted at the respective monitoring well locations on Sheets 2 through 4 (Appendix A). As indicated from this most recent groundwater sampling event, no constituents were detected in any of the groundwater samples at concentrations exceeding respective groundwater CTLs. As such, TRPH fractional analyses were not performed.

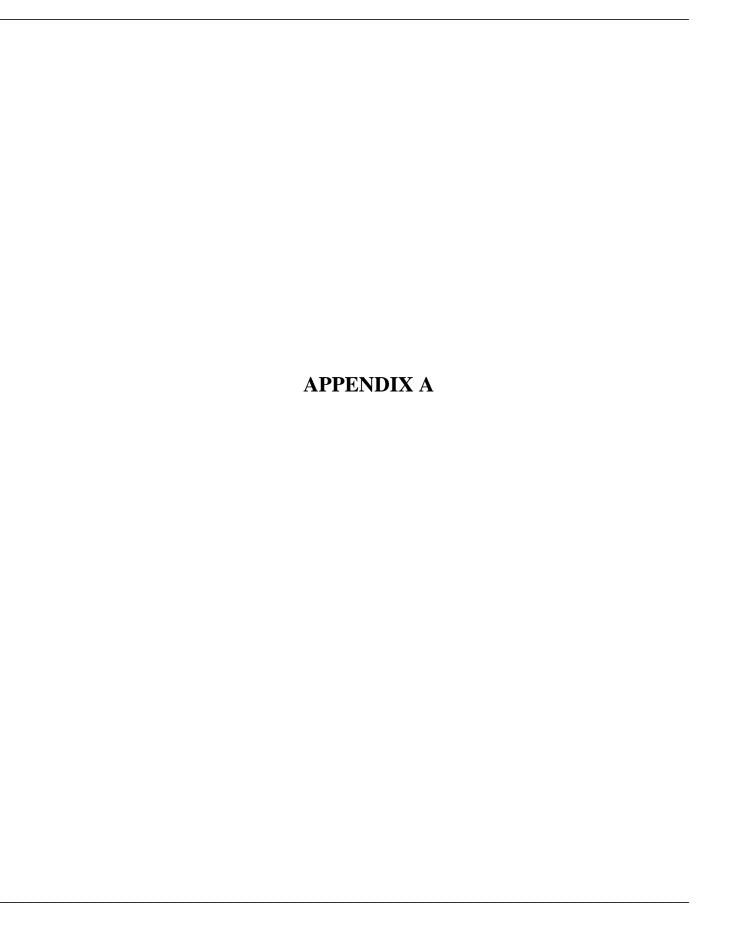
Water Table Elevation

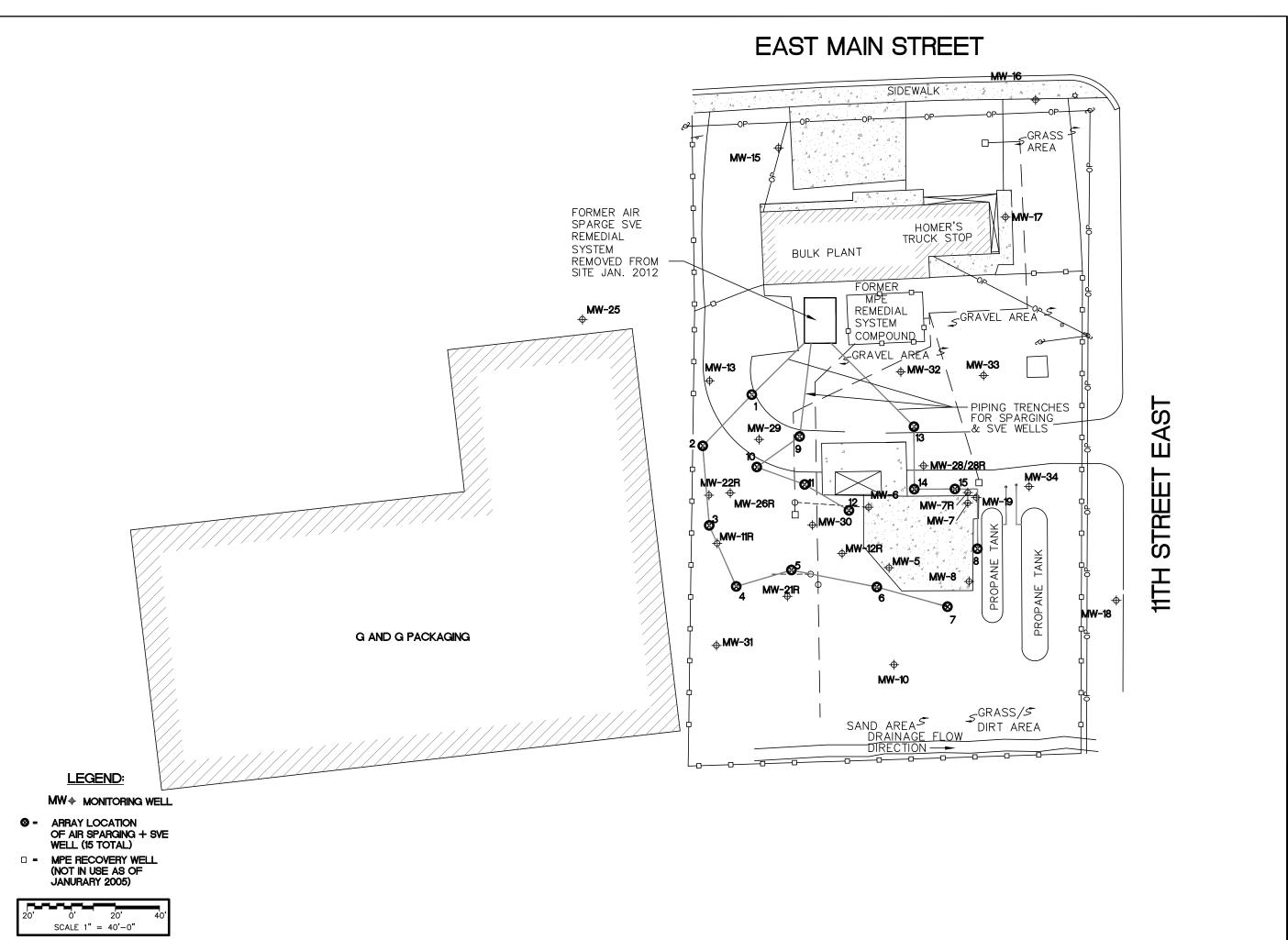
Water table measurements and associated elevations as obtained during the July 8, 2021 sampling of the various monitoring wells discussed above are compiled in Table 3 (Appendix B), which includes historical data. On the date of sampling, the water table was at approximately 6.5 ft. below ground level. Sheet 5 (Appendix A) is a map of the surficial aquifer water table elevation based on the water level/elevation measurements of July 8, 2021. The water table surface is relatively flat, but a general northeasterly direction of groundwater flow is inferred. This is consistent with previous groundwater elevation data.

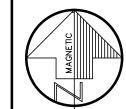
Conclusion

Based on this most recent (7/8/2021) groundwater sampling event of MWs 5, 6, 7R, 8, 12R, and 28R, no constituents were detected in the groundwater samples at concentrations exceeding respective groundwater CTLs. Pending further discussion, it is thus recommended to re-implement PARM and forego additional active remediation at this time. If it is agreed to conduct additional PARM, consideration can be given to only include the sampling of MW-7R on either a quarterly or semi-

annual basis. From the most recent prior PARM sampling events, it was only TRPH found to exceed groundwater CTLs, this being in the MW-7R and MW-28R groundwater samples only. Although not completed in conjunction with PARM, TRPH was not detected above the CTL of 5,000 ug/L in groundwater samples most recently obtained (i.e. July 8, 2021). On this basis, 2 consecutive sampling events, conducted a minimum of 3 months apart, have been conducted for MW-28R for which the TRPH CTL was not exceeded. It can thus be argued additional sampling of MW-28R is not required. Regarding MW-7R, if TRPH is not detected above the CTL of 5,000 ug/L in a future sampling event conducted at least 3 months subsequent to July 8, 2021, it is reasoned unconditional no further action status could be considered for the site. Additional discussion regarding this matter is warranted.

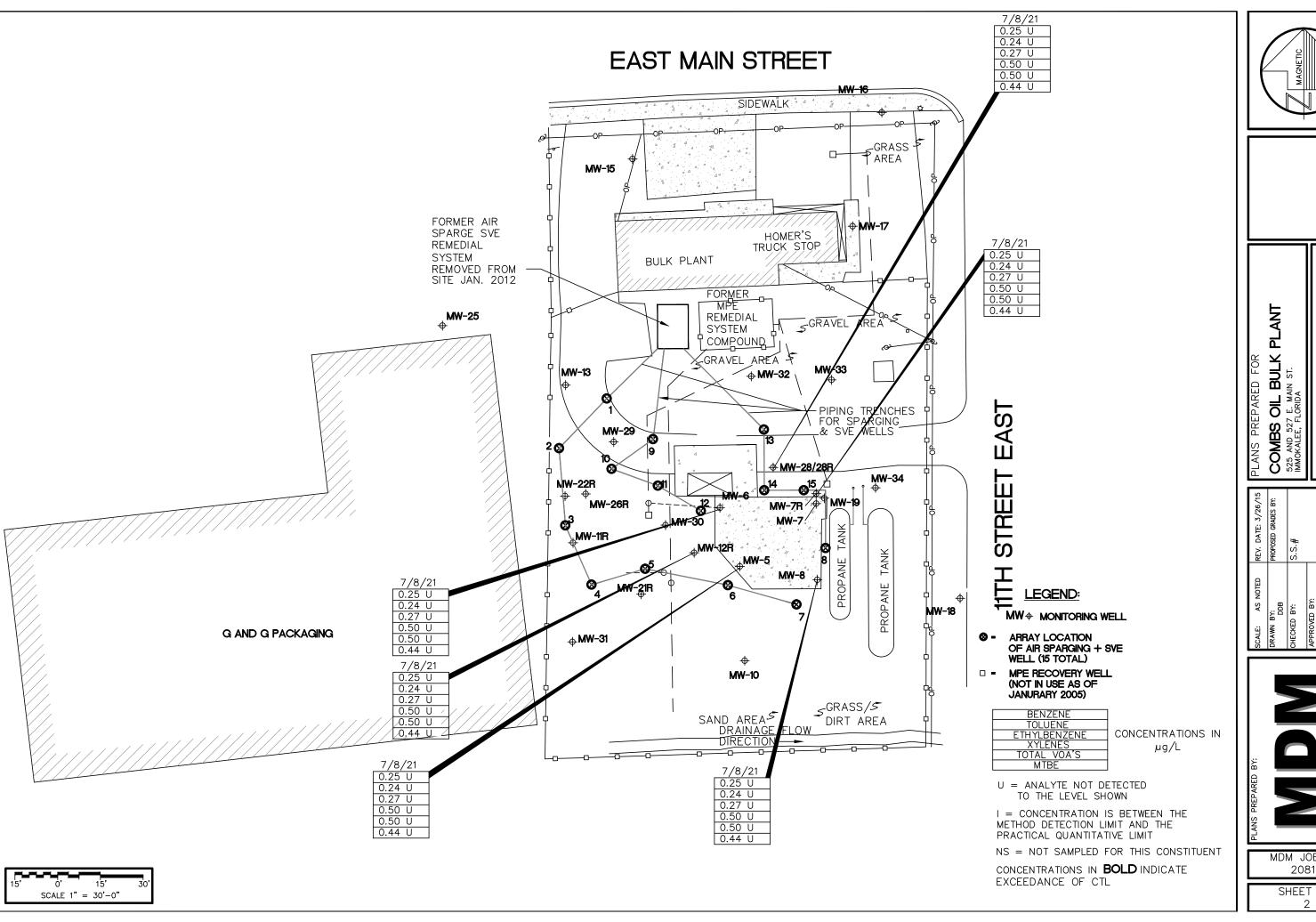

Should you require additional information during review of this Report, please contact me at 863-646-9130 or via email to jeff.morgan@mdmservices.com.

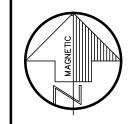

Sincerely,


MDM Services, Inc.

Jeff Morgan, P.G.

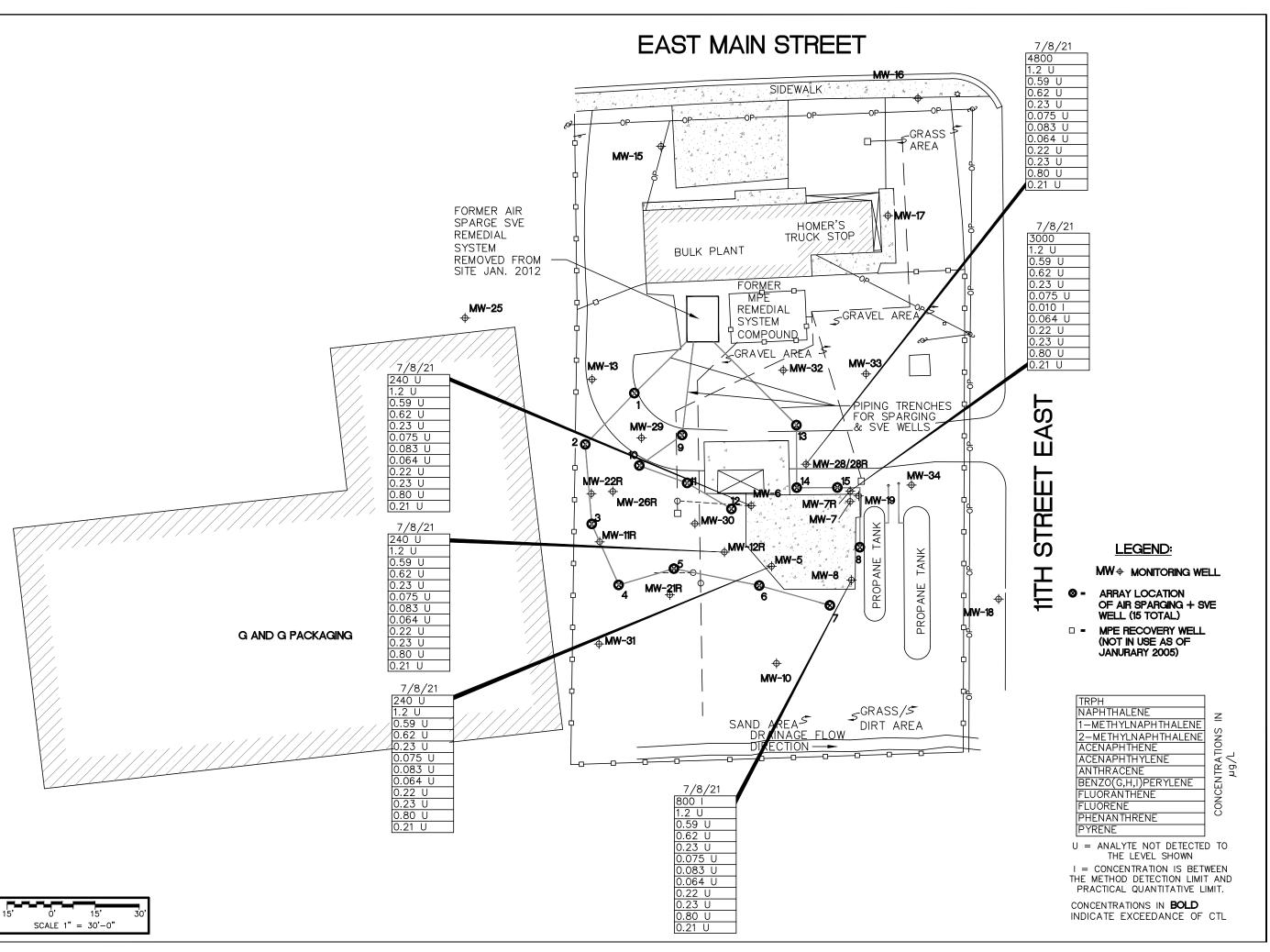
Project Manager

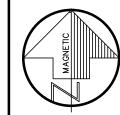

PLANT


SITE PLAN WITH MONITORING WELL LOCATIONS COMBS OIL BULK 525 AND 527 E. MAIN ST. IMMOKALEE, FLORIDA

BY: DDB DY: AS

MDM JOB NO. 20815



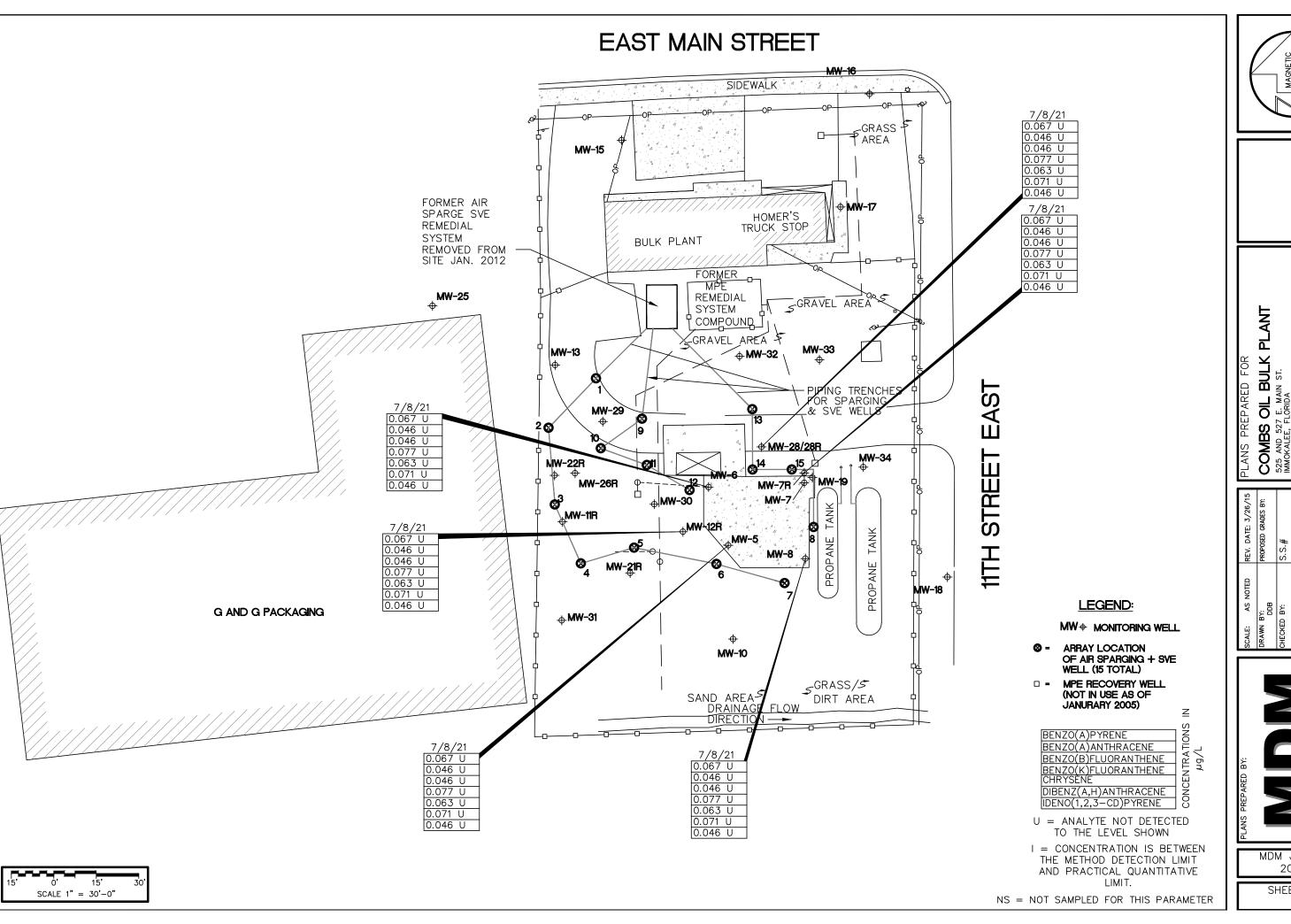

GROUNDWATER

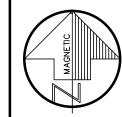
Z

SOO

MDM JOB NO. 20815

AND NON-CARCINOGENIC IN GROUNDWATER COMBS 525 AND 527 IMMOKALEE, F TRPH / PAHs I


PLANT


BULK NN ST

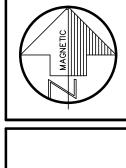
등

Y: DDB BY: AS

MDM JOB NO. 20815

PLANT OIL BULK

PAHs CARCINOGENIC PAIN GROUNDWATER


B.K.

MDM JOB NO. 20815

EAST MAIN STREET SIDEWALK GRASS F AREA MW-15 FORMER AIR HOMER'S TRUCK STOP SPARGE SVE REMEDIAL SYSTEM BULK PLANT REMOVED FROM SITE JAN. 2012 FORMER ... MW-25 REMEDIAL GRAVEL AREA SYSTEM COMPOUND GRAVEL AREA MW-33 MW-13 ⊕ MW-32 **EAST** - PIPING TRENCHES FOR SPARGING _& SVE WELLS MW-29 93.11 **⊕ MW-28/28R** MW-34 93.14 MW-19 NW-22R **93.14**) î STRE ⊕ 93.15 MW-7R² MW-26R **₩M-3**0 MW-11R 93381 MW-5 93.11 _**6**5__ MW-<u>2</u>1R PROPANE G AND G PACKAGING **⊕MW-31** MW-10 SGRASS/S SAND AREA S DRAINAGE FLOW DIRECTION -DIRT AREA

SCALE 1" = 30'-0"

PLANT
EVATION AND
77(8/21)

COMBS OIL BULK PLAN 525 AND 527 E. MAIN ST. IMMOKALEE, FLORIDA WATER TABLE ELEVATIC FI OW DIRECTION (7/8/2)

SCALE: AS NOTED REV. DATE: 3/26/15
DRAWN BY: PROPOSED GRADES BY:
CHECKED BY: S.S.#
APPROVED BY:

NNS PREPARED BY:

Sample and the sample and sample and

MDM JOB NO. 20815

> SHEET NO. 5

LEGEND:

MW + MONITORING WELL

- ♦ ARRAY LOCATION OF AIR SPARGING + SVE WELL (15 TOTAL)
- MPE RECOVERY WELL (NOT IN USE AS OF JANURARY 2005)

93.11 WATER TABLE ELEVATION (FT.)

FLO

FLOW DIRECTION

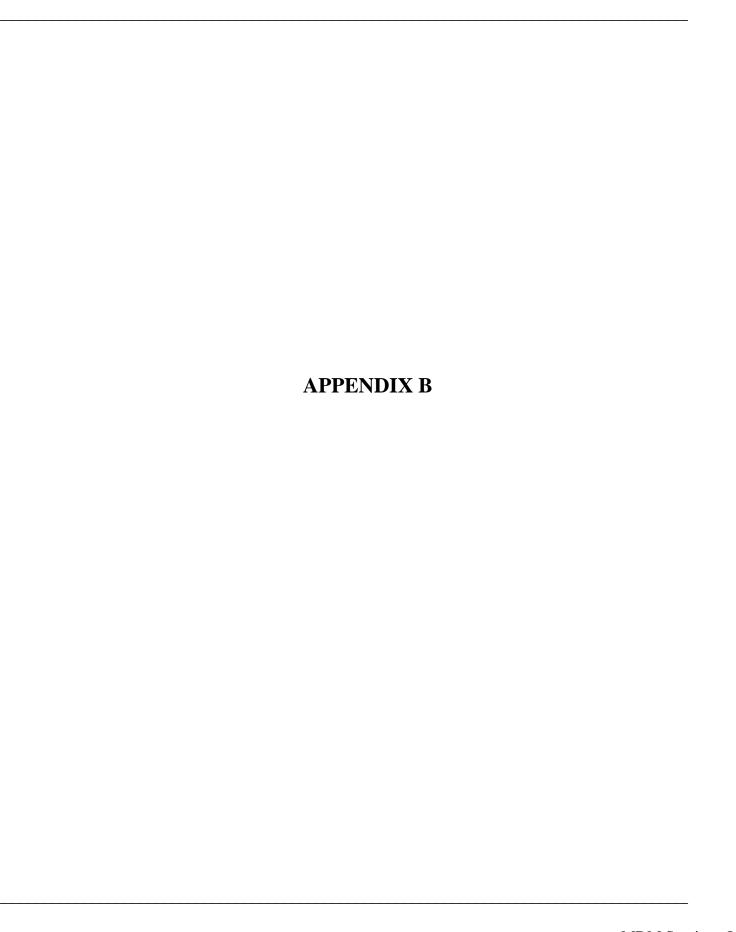


TABLE 1: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Sam	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-1	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-2	2/9/99	15	1 U	80	3 U	95.00	3.0 U	NS	NS	NS
MW-4	2/9/99	212	10.0 U	64	30.0 U	276.00	30.0 U	NS	NS	NS
MW-5	2/9/99	133	5.0 U	5.0 U	15.0 U	133.00	15.O U	NS	NS	NS
	6/16/03	390	55.00	50 U	57	502.00	120	NS	NS	NS
	11/8/11	77.90	0.70	1.24	5.09	84.93	8.78	NS	NS	NS
	1/3/12	0.56	0.48 U	0.45 U	0.94 I	1.50	1.8	NS	NS	NS
	4/3/12	47.90	2.43	0.48 I	1.89	52.22	4.69	NS	NS	NS
	8/20/12	19.50	0.140 U	0.190 U	6.16	25.66	26.5	NS	NS	NS
	11/26/12	0.42 I	0.48 U	0.45 U	0.87 U	0.42	0.75 I	NS	NS	NS
	2/25/13	16.50	0.48 U	0.75	0.87 U	17.25	2.04	NS	NS	NS
	5/23/13	5.00	0.52	0.45 U	0.87 U	5.52	5.18	NS	NS	NS
	11/20/13	2.63	0.48 U	0.45 U	0.87 U	2.63	0.67 U	NS	NS	NS
	6/10/14	11.70	0.48 U	0.45 U	2.07	13.77	3.56	NS	NS	NS
	11/19/14	1.20	0.140 U	0.190 U	0.200 U	1.20	1.25 I	NS	NS	NS
	5/19/15	51.7	4.24	0.45	1.65	58.04	1.62	NS	NS	NS
	12/23/15	7.0	0.45 U	0.26 U	1.3 U	7.0	12	NS	NS NS	NS
	6/16/16	0.48 U 0.18 U	0.69 U 0.74 I	0.72 U 0.42 I	1.6 U 2.4	0 U 3.56	0.51 U 1.6	NS NS	NS NS	NS NS
	12/21/16 6/19/17	5.7	0.74 T	0.42 T	1.1 U	5.70	3.4	NS NS	NS NS	NS NS
	6/19/17 4/12/18	5.7	3.8	0.26 U	1.1 0	61.9	4.3	NS NS	NS NS	NS NS
	7/12/18	19	0.45 U	0.26 U	1.11	20.8	4.3 0.45 U	NS NS	NS NS	NS NS
	10/11/18	0.20 U	0.45 U	0.26 U	0.59 I	0.59	0.41 U	NS	NS	NS
	1/11/19	21.5	0.43 U	0.190 U	0.200 U	21.5	2.64	NS	NS	NS
	9/18/19	1.02	0.640	0.190 U	0.200 U	1.660	0.180 U	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
	170721									
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
	6/16/03	34	48	92	280	454	320	NS	NS	NS
	11/7/03	87	46	52	93	278	12	NS	NS	NS
	2/18/04	20	31.00	36	230	317	5.3	NS	NS	NS
	5/18/04	500	250	230	1100	2,080	110	NS	NS	NS
	8/26/04	1.70	1.00	1 U	2.3	5.00	5.4	NS	NS	NS
	9/28/05	ΙU	1 U	1 U	2 U	1 U	4	NS	NS	NS
	10/21/05	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	12	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	10	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	3.06	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.29	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U NS	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
	0/00///			NS	NS	NS	NS	NS	NS	NS
las 41	2/23/10	NS 2.04			0.00011	2 77	0.00	NIC	NO	
by others	9/10/10	3.04	0.730 I	0.520 U	0.980 U	3.77	9.93	NS NS	NS NS	NS NS
by others	9/10/10 11/5/10	3.04 2.97	0.730 I 0.48 U	0.520 U 0.45 U	0.82 U	2.97	8.02	NS	NS	NS
by others	9/10/10 11/5/10 11/8/11	3.04 2.97 0.36 U	0.730 I 0.48 U 0.48 U	0.520 U 0.45 U 0.45 U	0.82 U 0.87 U	2.97 0.36 U	8.02 0.67 U	NS NS	NS NS	NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12	3.04 2.97 0.36 U 0.36 U	0.730 I 0.48 U 0.48 U 0.48 U	0.520 U 0.45 U 0.45 U 0.45 U	0.82 U 0.87 U 0.87 U	2.97 0.36 U 0.36 U	8.02 0.67 U 0.67 U	NS NS NS	NS NS NS	NS NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12	3.04 2.97 0.36 U 0.36 U 0.49 I	0.730 I 0.48 U 0.48 U 0.48 U 1.41	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U	0.82 U 0.87 U 0.87 U 1.30 I	2.97 0.36 U 0.36 U 3.20	8.02 0.67 U 0.67 U 0.67 U	NS NS NS	NS NS NS	NS NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18	3.04 2.97 0.36 U 0.36 U 0.49 I 0.20 U	0.730 I 0.48 U 0.48 U 0.48 U 1.41 0.45 U	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U 0.26 U	0.82 U 0.87 U 0.87 U 1.30 I 0.56 U	2.97 0.36 U 0.36 U 3.20 0.20 U	8.02 0.67 U 0.67 U 0.67 U 0.41 U	NS NS NS NS NS	NS NS NS NS	NS NS NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18	3.04 2.97 0.36 U 0.36 U 0.49 I 0.20 U 0.38 I	0.730 I 0.48 U 0.48 U 0.48 U 1.41 0.45 U 0.45 U	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U 0.26 U	0.82 U 0.87 U 0.87 U 1.30 I 0.56 U	2.97 0.36 U 0.36 U 3.20 0.20 U 0.38	8.02 0.67 U 0.67 U 0.67 U 0.41 U 6.3	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18	3.04 2.97 0.36 U 0.36 U 0.49 I 0.20 U 0.38 I 0.20 U	0.730 I 0.48 U 0.48 U 0.48 U 1.41 0.45 U 0.45 U 0.45 U	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U 0.26 U 0.26 U	0.82 U 0.87 U 0.87 U 1.30 I 0.56 U 0.56 U	2.97 0.36 U 0.36 U 3.20 0.20 U 0.38 0.20 U	8.02 0.67 U 0.67 U 0.67 U 0.41 U 6.3 0.41 U	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19	3.04 2.97 0.36 U 0.36 U 0.49 I 0.20 U 0.38 I 0.20 U	0.730 I 0.48 U 0.48 U 1.41 0.45 U 0.45 U 0.45 U 0.140 U	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U 0.26 U 0.26 U 0.26 U 0.190 U	0.82 U 0.87 U 0.87 U 1.30 I 0.56 U 0.56 U 0.56 U	2.97 0.36 U 0.36 U 3.20 0.20 U 0.38 0.20 U 0.200 U	8.02 0.67 U 0.67 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U	NS	NS	NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19 9/18/19	3.04 2.97 0.36 U 0.36 U 0.49 I 0.20 U 0.38 I 0.20 U	0.730 I 0.48 U 0.48 U 0.48 U 1.41 0.45 U 0.45 U 0.45 U	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U 0.26 U 0.26 U 0.26 U 0.190 U 0.760	0.82 U 0.87 U 0.87 U 1.30 I 0.56 U 0.56 U 0.56 U 0.200 U 5.77	2.97 0.36 U 0.36 U 3.20 0.20 U 0.38 0.20 U 0.200 U 35.43	8.02 0.67 U 0.67 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U 2.86	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19 9/18/19 12/16/19	3.04 2.97 0.36 U 0.36 U 0.49 I 0.20 U 0.38 I 0.20 U 0.160 U 28.9	0.730 I 0.48 U 0.48 U 1.41 0.45 U 0.45 U 0.45 U 0.140 U 0.140 U	0.520 U 0.45 U 0.45 U 0.45 U 0.26 U 0.26 U 0.26 U 0.190 U 0.760 0.26 U	0.82 U 0.87 U 1.30 I 0.56 U 0.56 U 0.56 U 0.200 U 5.77 0.56 U	2.97 0.36 U 0.36 U 3.20 0.20 U 0.38 0.20 U 0.200 U	8.02 0.67 U 0.67 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U	NS	NS	NS
by others	9/10/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19 9/18/19	3.04 2.97 0.36 U 0.49 I 0.20 U 0.38 I 0.20 U 0.160 U 28.9 0.20 U	0.730 I 0.48 U 0.48 U 1.41 0.45 U 0.45 U 0.45 U 0.140 U 0.140 U 0.45 U	0.520 U 0.45 U 0.45 U 0.45 U 0.45 U 0.26 U 0.26 U 0.26 U 0.190 U 0.760	0.82 U 0.87 U 0.87 U 1.30 I 0.56 U 0.56 U 0.56 U 0.200 U 5.77	2.97 0.36 U 0.36 U 3.20 0.20 U 0.38 0.20 U 0.200 U 35.43 0.20 U	8.02 0.67 U 0.67 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U 2.86 0.41 U	NS N	NS	NS

TABLE 1: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Sar	mple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
	6/16/03	360	50 U	50 U	50 U	360.0	1200	NS	NS	NS
	11/7/03	210	1.4	1.7	1 U	213.1	11	NS	NS	NS
	2/18/04	140	1 U	2.5	3.3	145.8	30	NS	NS	NS
	5/18/04	160	1.4	2	3	166.4	42	NS	NS	NS
	8/26/04	14	1 U	1.7	1.3	17.0	5 U	NS	NS	NS
	9/27/05	17	1 U	1 U	2 U	17.00	2	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1U	5 U	NS	NS	NS
	3/29/06	11	1 U	1.2	2 U	12.2	4.8	NS	NS	NS
	9/29/06	1.1	1 U	1 U	1 U	1.10	1 U	NS	NS	NS
	1/4/07	1.6	1 U	1 U	1 U	1.6	1 U	NS	NS	NS
	8/10/07	1.15	1 U	1 U	1 U	1.15	1 U	NS	NS	NS
	1/11/08	1.2	1 U	1 U	1.62	2.82	1 U	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.77	0.35	0.1959 U	0.2310 U	1.1200	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
by others	9/10/10	0.400 I	0.470 U	0.520 U	0.980 U	0.400 I	0.720 I	NS	NS	NS
MW-7R	4/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	7/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	10/11/18	54	5.4	0.26 U	0.56 U	59.4	3.6	NS	NS	NS
	1/11/19	22.2	0.140 U	0.190 U	0.200 U	22.2	0.180 U	NS	NS	NS
	9/18/19	3.47	0.760	0.190 U	0.200 U	4.230	0.900	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
MW-8	2/9/99	147.0	5.0 U	5.0 U	15.0 U	147.0	15.0 U	NS	NS	NS
	3/14/02	1 U	1 U	1 U	1 U	1 U	6.9	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	3	NS	NS	NS
	6/16/03	1 U	1.1	1 U	1 U	1.1	1 U	NS	NS	NS
	11/7/03	360	100 U	100 U	100 U	360	1600	NS	NS	NS
	5/18/04	400	6.6	1.4	1.2	409.2	37	NS	NS	NS
	8/26/04	2.8	1 U	1 U	1 U	2.8	5.1	NS	NS	NS
	9/28/05	28	2.4	1 U	2 U	30.4	15	NS	NS	NS
	12/28/05	31	1 U	1 U	2 U	31	12	NS	NS	NS
	3/29/06	24	1 U	1 U	2 U	24	4.6	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/10/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	6.82	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	14.5	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	46.7	NS	NS	NS
	1/21/2010	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	41.5	NS	NS	NS
	2/23/10	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	1.82	NS	NS	NS
	6/23/10	NS	NS	NS	NS	NS	0.85 I	NS	NS	NS
	9/10/10	13.4	0.470 U	0.520 U	0.980 U	13	4.11	NS	NS	NS
by others									1	
by others	11/5/10	12.4	0.48 U	0.45 U	0.87 U	12	7.9	NS	NS	NS

TABLE 1: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	1/3/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS
	4/3/12	13.6	1.43	0.45 U	0.87 U	15.03	1.7	NS	NS	NS
	8/20/12	0.160 U	0.140 U	0.190 U	1.07	1.07	0.180 U	NS	NS	NS
	11/26/12	7.22	1.62	0.45 I	1.12 I	8.84	0.67 U	NS	NS	NS
	2/25/13	1.67	0.48 U	0.45 U	0.87 U	1.67	0.67 U	NS	NS	NS
	5/23/13	0.76	0.48 U	0.45 U	0.87 U	0.76	0.67 U	NS	NS	NS
	11/20/13	4.89	0.48 U	0.45 U	0.87 U	4.89	0.85 I	NS	NS	NS
	6/10/14	3.4	0.48 U	0.45 U	1.01 I	3.4	2.48	NS	NS	NS
	11/19/14	0.160 U	0.140 U	0.190 U	0.200 U	0.140 U	0.180 U	NS	NS	NS
	5/19/15	0.44 U	0.48 U	0.45 U	1.65 U	3.25 U	0.67 U	NS	NS	NS
	12/23/15	4.6	0.45 U	0.26 U	1.3 U	4.6	3.4	NS	NS	NS
	6/16/16	0.16 U 0.18 U	0.23 U 0.49 U	0.24 U 0.38 U	0.53 U 1.1 U	0 U	0.83 I 10	NS	NS	NS NS
	12/21/16 6/19/17	0.18 U	0.49 U	0.36 U	1.1 U	0.37	0.41 U	NS NS	NS NS	NS NS
	4/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.37 0.20 U	1.1	NS	NS	NS
	7/12/18	100	35	0.20 U	3.3	138.83	0.41 U	NS	NS	NS
	10/11/18	52	23	0.67 I	7.7	83.37	0.41 U	NS	NS	NS
	1/11/19	21.4	0.140 U	0.190 U	0.200 U	21.4	0.180 U	NS	NS	NS
	9/18/19	0.160 U	0.140 U	0.190 U	0.200 U	0.200 U	0.180 U	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
MW-10	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
	6/16/03	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
MW-11	5/11/99	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
MW-11R	6/16/03	140	17	2.4	58	217.4	18	NS	NS	NS
	11/6/03	14	3.9	1 U	7.9	25.8	5 U	NS	NS	NS
	5/18/04	1 U	1 U	1 U	1 U	1 U	110	NS	NS	NS
	8/26/04	64	14	30	45	153	7.1	NS	NS	NS
	3/28/06	15	5.5	51	171.1	242.6	1 U	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1.75	2.09	10.9	44.7	59.44	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1.54	1.54	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	2.22	16.2	18.42	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U 1.25	1 U	NS NS	NS NS	NS NS
	8/5/09 10/28/09	0.2105 U 0.36 U	0.1601 U 0.48 U	0.24 0.45 U	1.01 0.88 I	0.88 I	0.2562 U 0.67 U	NS	NS	NS
by others	9/10/10	0.890 I	0.48 U	0.45 U	14.9	14.900	0.440 U	NS	NS	NS NS
MW-12	2/9/99	FP	FP	FP FP	FP	FP	FP FP	NS	NS	NS
MW-12R	3/14/02	110	20 U	63	130	303	1 U	NS	NS	NS
	6/10/02	310	5.3	230	170	715.3	11	NS	NS	NS
	9/9/02	100	2.5	12	14	128.5	7.8	NS	NS	NS
	12/11/02	110	4.2	3.6	18	135.8	6.4	NS	NS	NS
	11/6/03	2	1 U	1 U	1.5	3.5	12	NS	NS	NS
	2/18/04	1 U	1 U	1 U	1 U	1 U	<5	NS	NS	NS
	5/18/04	1.2	1 U	1 U	1 U	1.2	30	NS	NS	NS
	8/26/04	4.2	1	2.8	3.7	11.7	7.7	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	47	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	12	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS

TABLE 1: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-13	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
	6/16/03	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
MW-14	2/9/99	2	1 U	1 U	3.0 U	2.00	3.00	NS	NS	NS
MW-15	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-16	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-17	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-18	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-19	4/3/12 2/9/99	NS 1 U	NS 1 U	NS 1 U	NS 3.0 U	NS 1 U	NS 3.0 U	NS NS	NS NS	NS NS
10100-19	4/3/12	N	NS	NS	NS	NS	NS	NS	NS	NS NS
MW-20	2/9/99	1 U	1 U	1 U	3.0 U	1 U	5.00	NS	NS	NS
MW-21	2/9/99	13	1 U	12	3.0 U	25.00	3.0 U	NS	NS	NS
MW-21R	6/16/03	470	50 U	50 U	94	564	320	NS	NS	NS
WW 2110	11/6/03	1.8	1 U	1 U	1 U	1.8	5 U	NS	NS	NS
	2/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS
	5/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS
	8/26/04	2.5	1 U	1 U	1 U	2.5	7.6	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS NS	NS NS
	4/18/08 7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2105 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.440 U	NS	NS	NS
MW-22	5/11/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
MW-22R	3/14/02	310	270	460	2000	3,040.00	20 U	NS	NS	NS
	6/10/02	540	520	660	1700	3,420.00	82	NS	NS	NS
	9/9/02	94 160	31 140	250 410	330 840	705.00 1,550.00	5 U 100 U	NS NS	NS NS	NS NS
	11/7/03	26	84	330	1500	1,940.00	79	NS	NS	NS NS
	2/18/04	14	3.8	4.8	7.4	30.00	30	NS	NS	NS
	5/18/04	24	1 U	48	5	77	5 U	NS	NS	NS
	8/26/04	1 U	1.2	3	8.4	13	5 U	NS	NS	NS
	9/27/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	6.5	1 U	1 U	140	147	5 U	NS	NS	NS
	3/28/06	1 U	1.7	17	30.3	49.0	1 U	NS	NS	NS
	9/29/06	1 U	1 U	1 U	0.43	0.43	1 U	NS	NS	NS
	1/4/07	2.9	10	18	63.5	94.4 1 U	1 U	NS NS	NS NS	NS NS
	8/10/07 1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS NS	NS NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.440 U	NS	NS	NS
MW-23	2/9/99	8.0	3.0	3.0	7.0	21.0	3.0 U	NS	NS	NS
MW-25	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-26	5/11/99	11.0 0.160 U	1 U 0.140 U	1 U 0.190 U	1 U 0.510 U	11.0 1 U	2.50 0.180 U	NS NS	NS NS	NS NS
MW-26R	8/20/12 11/26/12	0.160 0	0.140 U 0.48 U	1.15	5.29	7.27	0.180 U	NS NS	NS NS	NS NS
	1 1/20/12	0.00	0.70 0	1.10	0.23	1.21	0.07 0	140	140	140

TABLE 1: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-27	5/11/99	9.60	1 U	4.40	1.90	15.90	7.80	NS	NS	NS
MW-28	11/7/03	270	16	280	350	916	16	NS	NS	NS
	2/18/04	340	13	250	280	883	50 U	NS	NS	NS
	5/18/04	140	2.1	160	81	383.1	12	NS	NS	NS
	8/26/04	1200	230	390	710	2,530	410	NS	NS	NS
	9/27/05	24	1.3	15	28	68.3	6.5	NS	NS	NS
	12/28/05	36	1 U	1 U	2 U	36	24	NS	NS	NS
	3/29/06	86	3.5	30	49.9	169.4	12	NS	NS	NS
	9/29/06	960	70	480	880	2,390	110	NS	NS	NS
	1/5/07	110	7.6	72	109	298.6	18 I	NS	NS	NS
	8/10/07	38.9	1.15	48.8	36.6	125.5	6.17	NS	NS	NS
	1/11/08	17.9	1 U	25.4	18.6	61.90	3.63	NS	NS	NS
	4/18/08	1.56	1 U	13.4	10.3	25.26	4.41	NS	NS	NS
	07/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.22	0.2310 U	0.22	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 I	NS	NS	NS
MW-28R	4/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	7/12/18	0.20 U	0.45 U	0.26 U	1.2 I	1.2	6.0	NS	NS	NS
	10/11/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	1/11/19	0.160 U	0.140 U	0.190 U	0.200 U	0.200 U	0.180 U	NS	NS	NS
	9/18/19	0.160 U	0.140 U	0.190 U	0.200 U	0.200 U	0.180 U	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
	770721									
MW-29	11/7/03	2900	100 U	4400	2900	10,200	500 U	NS	NS	NS
20	2/18/04	2000	100 0	1.00	2000	no sar				
	5/18/04	3700	18	5000	380	9,098	50 U	NS	NS	NS
	8/26/04	1800	54	4800	560	7,214	250 U	NS	NS	NS
	9/27/05	100	2.5	180	110	393	2	NS	NS	NS
	12/28/05	98	1 U	110	43	251	5 U	NS	NS	NS
	1/31/06	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	2.4	1 U	7.7	2 U	10	1 U	NS	NS	NS
	9/29/06	1.3	1 U	1.5	1 U	2.8	1 U	NS	NS	NS
	1/5/07	0.14 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/10/07	4.04	1 U	1 U	1 U	4.04	1 U	NS	NS	NS
	1/11/08	1 U	1U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	07/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	1.23	0.1601 U	0.1959 U	0.2310 U	1.23	0.7800	NS	NS	NS
	10/28/09	0.94	0.1601 U	0.1959 U	0.2310 U	0.94	0.7800 0.67 U	NS	NS	NS
	2/23/10	NS	0.46 U NS	0.45 U NS	0.82 U NS	NS	0.87 U	NS	NS	NS
by others	9/10/10	5.3	0.470 U	0.520 U	0.980 U	5.3	0.440 U	NS	NS	NS
by others	11/5/10	9.15	0.470 U	7.12	6.76	23.03	0.440 U	NS	NS	NS
				7.12 0.45 U	0.87 U	0.8	0.67 U	NS	NS NS	NS NS
	11/8/11 4/3/12	0.8	0.48 U	0.45 U				NS		NS NS
	4/3/12	0.5	0.78	0.45 U	0.87 U	1.28	0.67 U	INO	NS	INO

TABLE 1: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-30	11/6/03	2	1 U	1.5	1 U	3.5	5 U	NS	NS	NS
	2/18/04	3.5	1 U	1 U	1 U	3.5	5 U	NS	NS	NS
	5/18/04	8.7	1 U	1 U	1 U	8.7	5 U	NS	NS	NS
	8/26/04	29	2.6	6.9	20	58.5	5 U	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	20	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	16	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 I	NS	NS	NS
MW-31	11/6/03	1 U	1.8	1.9	3	6.70	5 U	NS	NS	NS
	5/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS
	8/26/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	9/29/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	1/5/07	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
MW-32	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
MW-33	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	0.160 U	0.140 U	0.190 U	0.510 U	0.140 U	0.180 U	NS	NS	NS
	11/26/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
GC	TLs	1**	40**	30**	20**	NA	20	0.02**	3**	15**
	OCs	100	400	300	200	NA	200	2	300	150

Notes:

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

^{** =} As provided in Chapter 62-550, F.A.C.

U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-2	2/9/99	NS	1,419	1 U	1 U	29	37	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-4	2/9/99	NS	74	1 U	1 U	21	25	1 U	1 U	1 U	24.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-5	2/9/99	NS	22.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	23	5.9	3.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/8/11	160 U	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	1/3/12	307 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	4/3/12	170 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.059 I	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	4/12/18	560 U	0.18 U	0.18 U	0.18 U	0.15 U	0.16 U	0.13 U	0.18 U	0.14 U	0.14 U	0.15 U	0.13 U	0.14 U	0.046 U	0.046 U	0.18 U	0.12 U	0.088 U	0.041 U
	7/12/18	580 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	590 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	263	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	378	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	240 U	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	510	1400	1800	100	10 U	1 U	1 U	1 U	190	360	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	9,700	12	37	17	2.8	1 U	1 U	1 U	1 U	3.6	3.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	1 U	5.5	1 U	1.5	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	25	13	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	10 U	16	12	13	10 U	1 U	1 U	1 U	15	23	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/05	NS	16	34	30	2.7	1 U	1 U	1 U	1 U	2.5	1.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	4.8	6	7.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
																		4	411	
	3/29/06	NS	19	36	46	2.5	1 U	1 U	1 U	1 U	2.5	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06 9/29/06	NS NS	19 1 U	36 1 U	46 1 U	2.5 1 U	1 U	1 U	1 U	1 U	2.5 1 U	2.3 1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06 1/4/07	NS NS	1 U 6.9	1 U 12	1 U 13	1 U 1.2	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U
	9/29/06 1/4/07 1/11/08	NS NS NS	1 U 6.9 NS	1 U 12 NS	1 U 13 NS	1 U 1.2 NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS	1 U 1 U NS
	9/29/06 1/4/07 1/11/08 4/17/08	NS NS NS	1 U 6.9 NS 4.56	1 U 12 NS 1 U	1 U 13 NS 1 U	1 U 1.2 NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U
	9/29/06 1/4/07 1/11/08 4/17/08 7/17/08	NS NS NS NS NS	1 U 6.9 NS 4.56 1 U	1 U 12 NS 1 U 1 U	1 U 13 NS 1 U 1 U	1 U 1.2 NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U
	9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08	NS NS NS NS NS NS NS	1 U 6.9 NS 4.56 1 U	1 U 12 NS 1 U 1 U 1 U	1 U 13 NS 1 U 1 U 1 U	1 U 1.2 NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U
	9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09	NS NS NS NS NS NS NS NS	1 U 6.9 NS 4.56 1 U 1 U	1 U 12 NS 1 U 1 U 1 U 1 U 1 U	1 U 13 NS 1 U 1 U 1 U 1 U 1 U	1 U 1.2 NS 1 U 1.0 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U
	9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09	NS	1 U 6.9 NS 4.56 1 U 1 U 1 U	1 U 12 NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 13 NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 NS 1 U 1.0 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1.29	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U
	9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09	NS	1 U 6.9 NS 4.56 1 U 1 U 1 U 1 U 0.037	1 U 12 NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 13 NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.001 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 0.001 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.099	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.001 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U NS 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U

San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6	1/3/12	3,827	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	1,569	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	4,582	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	2,865	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	2,961	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	6,210	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	2,170	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	9,560	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	1,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	1,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	3,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	760	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/12/18	15,000	0.40	5.7	7.3	3.2	0.16 U	0.63	0.18 U	0.36	3.0	1.7	2.8	0.14 U	0.093 I	0.047 U	0.18 U	0.12 U	0.090 U	0.042 U
	7/12/18	4,400	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	1,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	1,870	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	1,540	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	1,600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	2,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	240 U	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	140	100	130	9.4	1 U	1 U	1 U	1 U	10	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	26,000	14	15	14	1.9	1 U	1 U	1 U	1 U	2.8	3.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	13	7.4	7.8	1.2	1 U	1 U	1 U	1 U	1.6	1.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	66	34	46	1.7	1 U	1 U	1 U	1 U	2.4	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	19	15	14	2	1 U	1 U	1 U	1 U	2	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	7.5	8.8	7.2	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.463	0.527	0.716	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.260	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	16,500	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/10	428 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	12,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	28,367	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	30,299	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	12,972	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	12,390	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	11,486	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	11,214	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	12,748	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	19,982	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	27,386	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	15,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	17,800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	7,900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	24,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-7R	4/12/18	8,000	0.23	1.2	0.80	0.97	0.16 U	0.13 U	0.18 U	0.14 U	0.62	0.62	0.44	0.14 U	0.046 U	0.047 U	0.18 U	0.12 U	0.090 U	0.042 U
	7/12/18	3,700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	3,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	3,510	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	3,380	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	4,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	5,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/18/20	6,800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	3,000	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.10 I	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-8	2/9/99	NS	32.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	720 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	6/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	934.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	0.220 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/12/18	570 U	0.18 U	0.19 U	0.18 U	0.15 U	0.16 U	0.13 U	0.18 U	0.14 U	0.15 U	0.15 U	0.13 U	0.14 U	0.046 U	0.047 U	0.18 U	0.12 U	0.090 U	0.057 I
	7/12/18	2,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	1,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	203	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	1,780	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	800 I	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-10	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-11	5/11/99	NS	1.3	1 U	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-11R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/6/03	2,100	4.7	4	5.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
by others	9/10/10	235	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
MW-12R	3/14/02	NS	24	11	15	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	82	43	57	1.5	1 U	1 U	1 U	1 U	2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	3.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	36	17	22	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/6/03	3,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	1.1	1.5	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2	1.8	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/8/21	240 U	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-13	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/31/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-14	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-15	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Sam	iple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-16	2/9/99	NS	7.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-17	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-18	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	222 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	426 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21	2/9/99	NS	10.0	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 U
	11/6/03	2,500.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	2	2.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2.8	2.4	3.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.05 U
by others	9/10/10	115.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-22	5/11/99	NS	FP	FP	FP	FP	FP	NS	NS	NS	FP	FP	FP	FP	NS	NS	FP	FP	NS	NS
MW-22R	3/14/02	NS	52	21	32	1 U	1 U	1 U	1 U	1 U	1.4	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	48	72	1 U	2.5	1.7	1 U	1 U	1 U	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	35	17	28	1 U	1 U	1 U	1 U	1 U	1.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	83	32	51	1.3	1 U	1 U	1 U	1 U	1.7	25	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	5,000	35	10	26	1 U	1 U	1 U	1 U	1 U	1	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	8.5	8.8	14	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Samı	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-22R	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.010	0.231	0.001 U	0.001 U	0.011	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.160 U	0.160 U	0.052 U	0.054 U	0.054 U	0.054 U
by others	9/10/10	46 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-23	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-25	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-26	5/11/99	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-26R	8/20/12	NS	1.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-27	5/11/99	NS	1.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-28	11/7/03	4,600.00	14	12	13	2	1 U	1 U	1 U	1 U	2.7	4.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	29	21	26	2.2	1 U	NS	NS	NS	3.2	5.8	1 U	1 U	NS	NS	1 U	1 U	1 U	1 U
by others	9/10/10	11,200	0.127	0.126	0.134	0.320	0.025 U	0.025 U	0.025 U	0.025 U	0.082	0.113	0.072	0.015 U	0.015 U	0.015 U	0.015 U	0.025 U	0.025 U	0.025 U
	11/8/11	7,546	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	1/3/12	9,396	0.173 U	0.153 U	0.160 U	0.253	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.284	0.336	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	3,800	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.138 I	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	8/20/12	5,326	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	15,372	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	8,981	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	1,006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	28,520	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	17,450	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	10,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
+	5/19/15	5,840	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
+	12/23/15	12,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
+	6/16/16	9,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2 0, . 0		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	14,000						1												
	12/21/16 6/19/17	14,000 5,000				NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-28R	6/19/17	5,000	NS	NS	NS	NS 0.29	NS 0.16 U	NS 0.13 U		NS 0.14 U	NS 0.15 U	NS 0.15 U	NS 0.28	0.14 U	NS 0.046 U	NS 0.047 U	NS 0.18 U	NS 0.12 U	NS 0.090 U	NS 0.042 U
MW-28R	6/19/17 4/12/18	5,000 15,000	NS 0.18 U	NS 0.19 U	NS 0.21	0.29	0.16 U	0.13 U	0.18 U	0.14 U	0.15 U	0.15 U	0.28	0.14 U	0.046 U		0.18 U	0.12 U	0.090 U	
MW-28R	6/19/17	5,000	NS	NS	NS											0.047 U				0.042 U

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-28R	9/18/19	24,900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	15,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	8,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/18/20	2,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	4,800	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-29	11/7/03	30,000.00	54	20	36	1.3	1 U	1 U	1 U	1 U	1.9	3.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/31/06	NS	5.5	1.6	1.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	959	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	2,350	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/5/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	976	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	216 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
MW-30	11/6/03	5,600	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	1 U
	2/18/04	NS	1 U	2.2	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	7.4	4.2	6.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08 2/3/09	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS NS	0.003 U	0.003 U	1 U 0.003 U	1 U 0.003 U	0.003 U	1 U 0.003 U	1 U 0.003 U	1 U 0.003 U	0.001 U	1 U 0.001 U	0.001 U	1 U 0.010 U	0.010 U	0.010 U	0.001 U	1 U 0.002 U	0.002 U	0.002 U
	10/28/09	NS NS	0.003 U	0.003 U	0.003 U 0.160 U	0.003 U 0.047 U	0.003 U 0.098 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.010 U	0.010 U	0.010 U	0.001 U	0.002 U	0.002 U	0.002 U 0.054 U
	2/23/10	509 I	0.173 U NS	0.153 U NS	0.160 U	0.047 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.160 U	0.160 U	0.128 U NS	0.067 U NS	0.067 U NS	0.067 U NS	0.052 U NS	0.054 U NS	0.054 U NS	0.054 U NS
by others	9/10/10	151.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS

Facility ID#: 118839176 Facility Name: Combs Oil Bulk Plant See notes at end of table.

Sam	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-31	11/6/03	650 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-32	1/31/06	260	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-33	1/31/06	300	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	186 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	651	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	11/26/12	167 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/25/13	183 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	568	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
GC	ΓLs	5,000	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NAD)Cs	50,000	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5

Notes:

FP = Well contained free product

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.

^{** =} As provided in Chapter 62-550, F.A.C.

^a = See the October 12, 2004 "Guidance for the Selection of Analytical Methods and for the Evaluation of Practical Quantitation Limits" to determine how to evaluatie data when the CTL is lower than the PQL.

TABLE 3: GROUNDWATER ELEVATION TABLE

Facility Name: Combs Bulk Plant/Homer's Truck Stop Facility ID#: 118839176 & 118839434 All Measurements = Feet No Data = Blank MDM Job# 20815

WELL NO.	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
DIAMETER	4 inch	4 inch	4 inch	4 inch	2 inch	2 inch
WELL DEPTH	11 ft.	11 ft.	11 ft.	11 ft.	11 ft.	11 ft.
SCREEN INTERVAL	1.5 to 11	1.5 to 11	1.5 to 11	1.5 to 11	2 to 11	2 to 11
TOC ELEVATION	99.63	99.51	99.90	99.53		99.36

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
10/15/2001	96.32	3.35		95.82	3.98	1 in.	96.06	3.84	0.5 in.	96.12	3.41							
3/14/2002	92.56	7.11		92.49	7.31	0.5 in.	92.45	7.45		92.50	7.03					92.61	6.75	
6/10/2002	91.85	7.82		91.95	7.85	1/4 in.	91.78	8.12		91.83	7.70					91.68	7.68	
9/9/2002	94.91	4.76		94.90	4.90	1/4 in.	94.71	5.19		94.98	4.55					95.01	4.35	
12/11/2002	94.76	4.91		94.77	5.03	0.5 in.	94.16	5.74		94.66	4.87					94.65	4.71	
5/15/2003	92.40	7.27		92.81	6.99		92.29	7.61		92.28	7.25					92.23	7.13	
6/16/2003	93.57	6.10		93.30	6.50	1/8 in.	93.48	6.42		93.43	6.10					93.49	5.87	
11/6/2003				94.02	4.78		95.05	4.85		94.98	4.55			4.69		95.40	3.96	
2/18/2004				93.00	5.80		93.63	6.27		93.57	5.96							
5/18/2004				92.75	6.05		92.00	7.90		92.03	7.50							
8/26/2004				95.25	3.55		95.80	4.10		95.80	3.73							
9/27/2005				94.64	4.16		94.95	4.95		94.99	4.54							
12/28/2005				93.82	4.98		94.40	5.50		94.29	5.24							
3/29/2006				92.12	6.68		92.81	7.09		92.71	6.82							
9/29/2006				95.16	3.64		95.66	4.24		95.66	3.87							
1/4/2007				93.50	6.30		93.05	6.85		92.88	6.65							
8/10/2007				00.00	0.00		91.90	8.00		92.08	7.45							
1/11/2008				92.78	6.73		91.81	8.09		91.78	7.75							
4/17/2008				91.65	8.15		91.36	8.54		01.70	7.70							
4/18/2008				01.00	0.10		01.00	0.01		91.24	8.29							
7/17/2008				94.63	4.88		93.40	6.50		94.59	4.94							
10/21/2008				95.95	3.85		94.96	4.94		95.57	3.96							
2/3/2009				93.26	6.54		92.86	7.04		92.87	6.66							
5/4/2009				90.98	8.82		90.70	9.20		90.58	8.95							
8/5/2009				96.65	3.15		96.17	3.73		96.16	3.37							
10/28/2009				94.98	4.82		94.60	5.30		94.53	5.00							
2/23/2010				94.10	5.70		93.79	6.11		93.72	5.81							
3/4/2010				94.10	5.70		93.80	6.10		93.12	5.61							
6/23/2010							93.60	0.10		94.33	5.20							
	04.96	4.81		05.12	4.68		94.74	5.16			4.80							
11/8/2011 1/3/2012	94.86			95.12	6.50					94.73	6.60							
4/3/2012	93.07	6.60 8.60		93.30 91.35	8.45		93.00 91.15	6.90 8.75		92.93	8.50							
					7.64		91.15				7.70							
8/20/2012	91.78	7.85		91.87	7.04			8.04		91.83								
11/26/2012	93.32	6.31		00.04	7.50		93.29	6.61		93.24	6.29							
2/25/2013	91.98	7.65		92.01	7.50		92.00	7.90		91.98	7.55							
5/23/2013	91.90	7.73		92.28	7.23		92.35	7.55		92.11	7.42							
11/20/2013	94.18	5.45		94.20	5.31		94.12	5.78		94.10	5.43							
6/10/2014	92.20	7.43		92.28	7.23		92.21	7.69		92.23	7.30							
11/19/2014	93.48	6.15		93.51	6.00		93.50	6.40		93.45	6.08							
5/19/2015	92.53	7.10		92.56	6.95		92.60	7.30		92.61	6.92							
12/23/2015	94.49	5.14		94.53	4.98		94.44	5.46		94.38	5.15							
6/16/2016	96.03	3.60		96.07	3.44		95.98	3.92		95.89	3.64							
12/21/2016	93.14			93.13	6.38		93.10			93.04								
6/19/2017	96.53	3.10		96.61	2.90		96.40	3.50		96.43								
4/12/2018	92.56	7.07		92.57	6.94					92.48								
7/12/2018	96.00	3.63		96.05	3.46					95.89								
10/11/2018	95.45	4.18		95.51	4.00					95.43								
1/11/2019	93.20	6.43		93.22	6.29					93.16								
9/18/2019	94.96	4.67		95.03	4.48					93.85	5.68							
12/16/2019	93.17	6.46		93.16	6.35					93.08								
3/16/2020	92.04	7.59		92.04	7.47					92.01	7.52							
7/8/2021	93.11	6.52		93.15	6.36					93.23	6.30							
							I											

WELL NO.	MW-11R	MW-12R	MW-13	MW-14	MW-15	MW-16
DIAMETER	2 inch	2 inch	4 inch	4 inch	4 inch	4 inch
WELL DEPTH	10.5 ft	12 ft.	14 ft.	14 ft.	14 ft.	14 ft.
SCREEN INTERVAL	2 to 10.5	2 to 12	2 to 14	2 to 14	2 to 14	2 to 14
TOC ELEVATION	99.46	99.65	99.49		99.86	99.12

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FΡ
10/15/2001	96.41	3.05		96.45	3.01													
3/14/2002	92.75	6.71		92.62	6.84		92.67	6.82								92.67	6.45	
6/10/2002	91.76	7.70		91.76	7.70		91.94	7.55								91.44	7.68	
9/9/2002	95.20	4.26		94.96	4.50		95.20	4.29								95.31	3.81	
12/11/2002	94.82	4.64		94.86	4.60		95.59	3.90								95.01	4.11	
5/15/2003	92.33	7.13		can	not loca	ite	92.77	6.72										
6/16/2003	93.64	5.82		can	not loca	ite	93.67	5.82								93.60	5.52	
11/6/2003	95.41	4.05		95.37	4.28		95.98	3.51										
2/18/2004	93.76	5.70		93.74	5.91													
5/18/2004	92.26	7.20		92.23	7.42													
8/26/2004	96.04	3.42		96.00	3.65													
9/27/2005				95.62	4.03													
12/28/2005				94.77	4.88													
1/31/2006							93.67	5.82										
3/29/2006	92.91	6.55		93.05	6.60													
9/29/2006	96.04	3.42		96.13	3.52													
1/5/2007	93.16	6.30		93.33	6.32													
1/11/2008	91.90	7.56		92.10	7.55													
4/18/2008	91.51	7.95		91.80	7.85													
7/17/2008	94.78	4.68																
10/21/2008	95.82	3.64																
2/3/2009	93.06	6.40																
5/4/2009	90.81	8.65																
8/5/2009	96.48	2.98																
10/28/2009	94.84	4.62																
7/8/2021				93.38	6.27													

TABLE 3: GROUNDWATER ELEVATION TABLE

Facility Name: Combs Bulk Plant/Homer's Truck Stop Facility ID#: 118839176 & 118839434

All Measurements = Feet No Data = Blank

WELL NO.	MW-17	MW-18	MW-19	MW-20	MW-21R	MW-22R
DIAMETER	4 inch	4 inch	4 inch	4 inch	4 inch	4 inch
WELL DEPTH	14 ft.	15 ft.	30 ft.	30 ft.	12 ft.	14 ft
SCREEN INTERVAL	1.5 to 11	1.5 to 11	25 to 30	25 to 30	2 to 12	4 to 14 ft
TOC ELEVATION	99.9	98.84	99.75		99.49	99.32

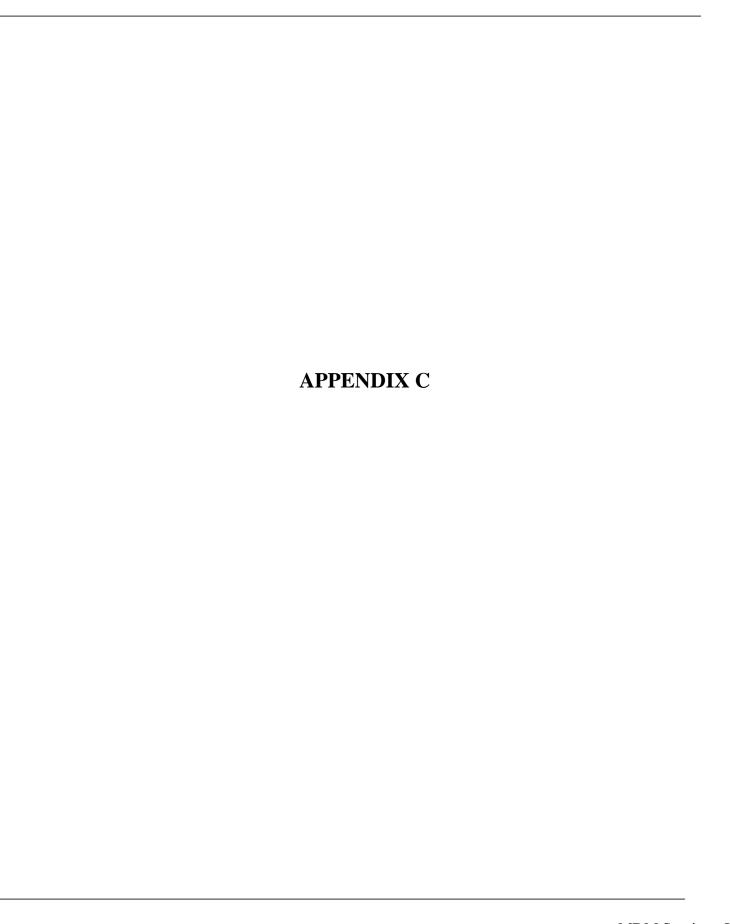
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP									
10/15/2001	96.09	3.81											96.45	3.04		96.41	2.43	
3/14/2002	92.64	7.26		92.44	6.4								92.75	6.74		92.58	6.26	
6/10/2002	91.95	7.95											91.79	7.7		91.66	7.18	
9/9/2002	95.27	4.63		95.01	3.83								95.18	4.31		95.21	3.63	
12/11/2002	94.77	5.13		94.54	4.3		94.57	5.18					94.86	4.63		94.79	4.05	
5/15/2003				92.26	6.58		92.3	7.45					92.31	7.18		can	not loca	ate
6/16/2003	93.56	6.34		93.36	5.48		93.4	6.35					93.69	5.8		can	not loca	ate
11/6/2003				94.97	3.87								95.41	4.08		95.36	4.05	
2/18/2004													93.79	5.7		93.76	5.65	
5/18/2004													92.34	7.15		92.23	7.18	
8/26/2004													96.11	3.38		96.1	3.31	
9/27/2005													95.47	4.02		95.46	3.95	
12/28/2005													94.67	4.82		94.61	4.80	
3/29/2006													92.93	6.56		92.78	6.63	
9/29/2006													95.99	3.50		95.95	3.46	
1/4/2007													93.29	6.20		93.23	6.18	
8/10/2007																92.21	7.2	
1/11/2008														DRY		91.7	7.71	
4/17/2008																91.21	8.2	
4/18/2008													91.48	8.01				
7/17/2008													94.75	4.74		94.86	4.55	
10/21/2008													95.8	3.69		95.61	3.8	
2/3/2009													93.03	6.46		92.79	6.62	
5/4/2009													90.74	8.75		90.53	8.88	
8/5/2009													96.44	3.05		96.39	3.02	
10/28/2009													94.84	4.65		94.66	4.75	
4/3/2012				90.96	7.88		90.95	8.8										
8/20/2012																91.90	7.42	
WELL NO.	I	MW-23			MW-24		ı	MW-25		MW	-26/MW	26R		MW-27		-	MW-28	
DIAMETER		4 inch			4 inch			4 inch		10100	4 inch	2011		4 inch			2 inch	
DIMINETER		7 111011			7 111011			7 111011			7 111011			7 111011			2	

WELL NO.	MW-23	MW-24	MW-25	MW-26/MW26R	MW-27	MW-28
DIAMETER	4 inch	4 inch	4 inch	4 inch	4 inch	2 inch
WELL DEPTH	14 ft.	14 ft.	14 ft.	30 ft.	14 ft.	12 ft.
SCREEN INTERVAL	2 to 14	1.5 to 14	1.5 to 14	25 to 30	4 to 14	2 to 12
TOC ELEVATION			100.6	99.68		99.74

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV		FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
12/11/2002							95.22	5.34										
5/15/2003							92.91	7.65										
6/16/2003								ite locke										
11/6/2003							ga	ite locke	ed							95.35	4.37	
2/18/2004																93.6	6.12	
5/18/2004																92.2	7.52	
8/26/2004																95.62	4.1	
9/27/2005																94.48	5.24	
12/28/2005																94.49	5.23	
3/29/2006																92.82	6.90	
9/29/2006																95.72	4.00	
1/5/2007																92.94	6.78	
8/10/2007																91.81	7.91	
1/11/2008																91.76	7.96	
4/18/2008																91.18	8.54	
7/17/2008																92.67	7.05	
10/21/2008																93.81	5.91	
2/3/2009																92.84	6.88	
5/4/2009																90.62	9.1	
8/5/2009																96.04	3.68	
10/28/2009																94.6	5.12	
11/8/2011																94.72	5.00	
1/3/2012																93.02	6.70	
4/3/2012																91.07	8.65	
8/20/2012										91.75	7.93					91.90	7.84	
11/26/2012										93.55	6.13					93.34	6.40	
2/25/2013																92.04	7.7	
5/23/2013																92.38	7.36	
11/20/2013																94.22	5.52	
6/10/2014																92.25	7.49	
11/19/2014																93.54	6.20	
5/19/2015																92.61	7.13	
12/23/2015																94.44	5.30	
6/16/2016																95.95	3.79	
12/21/2016																93.14	6.60	
6/19/2017																96.27	3.47	
												-						

TABLE 3: GROUNDWATER ELEVATION TABLE

All Measurements = Feet No Data = Blank


Facility Name: Combs Bulk Plant/Homer's Truck Stop Facility ID#: 118839176 & 118839434

WELL NO.	MW-29	MW-30	MW-31	MW-32	MW-33	MW-34
DIAMETER	2 inch					
WELL DEPTH	12 ft.					
SCREEN INTERVAL	2 to 12					
TOC ELEVATION	99.59	99.71	98.98	100.2	100.2	99.69

DATE	ELEV	DTW	FP															
11/6/2003	95.39	4.2		95.31	4.4		95.38	3.6										
2/18/2004	93.75	5.84		93.73	5.98		93.71	5.27										
5/18/2004	92.17	7.42		92.26	7.45		92.13	6.85										
8/26/2004	95.97	3.62		95.98	3.73		96.02	2.96										
9/27/2005	94.00	5.59		95.38	4.33		95.42	3.56										
12/28/2005	94.63	4.96		94.53	5.18		94.55	4.43										
1/31/2006	93.70	5.89								93.78	6.44		93.92	6.27				
3/29/2006	93.08	6.51		92.81	6.90		92.84	6.14										
9/29/2006	95.81	3.78		95.89	3.82		95.93	3.05										
1/4/2007				93.21	6.50													
1/5/2007	91.19	8.40					93.18	5.80										
8/10/2007	91.67	7.92																
1/11/2008	91.88	7.71		91.88	7.83		91.84	7.14										
4/17/2008				91.41	8.3		91.4	7.58										
4/18/2008	91.14	8.45																
7/17/2008	93.44	6.15		94.69	5.02		94.76	4.22										
10/21/2008	94.39	5.2		95.73	3.98		95.73	3.25										
2/3/2009	92.95	6.64		92.96	6.75		92.96	6.02										
5/4/2009	90.74	8.85		90.66	9.05		90.62	8.36										
8/5/2009	96.39	3.20		96.36	3.35		96.38	2.6										
10/28/2009	94.79	4.80		94.73	4.98		94.71	4.27										
2/23/2010	93.89	5.70		93.89	5.82								94.22	5.98				
11/8/2011	94.88	4.71																
4/3/2012	91.09	8.50											91.55	8.65				
8/20/2012	91.89	7.70														91.86	7.83	
11/26/2012																93.26	6.43	
2/25/2013																91.99	7.7	
5/23/2013																92.31	7.38	

WELL NO	1404/35	NAVA 00D		
WELL NO.	MW-7R	MW-28R		
DIAMETER	2 inch	2 inch		
WELL DEPTH	12 ft.	12 ft.		
SCREEN INTERVAL	2 to 12	2 to 12		
TOC ELEVATION	99.84	99.79		

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV D	TW	FP
4/12/2018	92.49	7.35		92.48	7.31													
7/12/2018	95.81	4.03		95.73	4.06													
10/11/2018	95.34	4.50		95.39	4.40													
1/11/2019	93.16	6.68		93.15	6.64													
9/18/2019	94.90	4.94		94.85	4.94													
12/16/2019	93.11	6.73		93.10	6.69													
3/16/2020	92.01	7.83		92.03	7.76													
6/18/2020	93.86	5.98		93.84	5.95													
7/8/2021	93.14	6.70		93.11	6.68													
			·															
			·															

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634

Tel: (813)885-7427

Laboratory Job ID: 660-112079-1

Client Project/Site: Combs Oil Company

For:

MDM Services 1055 Kathleen Road Lakeland, Florida 33805

Attn: Jeff Morgan

Must Gener

Authorized for release by: 7/16/2021 4:36:31 PM

Matt Jones, Project Manager I

(850)284-4486

matthew.jones@eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 660-112079-1

Client: MDM Services Project/Site: Combs Oil Company

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	8
QC Sample Results	16
QC Association Summary	
Lab Chronicle	25
Method Summary	27
Certification Summary	28
Chain of Custody	29
Field Data Sheets	31
Receint Checklists	32

4

6

8

10

11

13

Sample Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset IE
660-112079-1	MW5	Water	07/08/21 11:25	07/09/21 15:50	
660-112079-2	MW6	Water	07/08/21 11:56	07/09/21 15:50	
660-112079-3	MW7R	Water	07/08/21 12:24	07/09/21 15:50	
660-112079-4	MW8	Water	07/08/21 10:54	07/09/21 15:50	
660-112079-5	MW12R	Water	07/08/21 12:59	07/09/21 15:50	
660-112079-6	MW28R	Water	07/08/21 13:28	07/09/21 15:50	

_

10

11

13

14

Case Narrative

Client: MDM Services

Job ID: 660-112079-1 Project/Site: Combs Oil Company

Job ID: 660-112079-1

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-112079-1

Comments

No additional comments.

Receipt

The samples were received on 7/9/2021 3:50 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: The following samples formed emulsions during the extraction procedure: MW7R (660-112079-3), MW8 (660-112079-4) and MW28R (660-112079-6). The emulsions were broken up using sodium sulfate.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Qualifiers

GC/MS VOA

U Indicates that the compound was analyzed for but not detected.

GC/MS Semi VOA

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

Glossary

Abbreviation	These commonly	used abbreviations may	v or may not	be present in this report.
ADDIEVIALIOII	THESE COMMISSION	, useu abbi evialions ina	y Oi illay liot	be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

6

7

8

4 4

12

10

Detection Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW5 Lab Sample ID: 660-112079-1

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Field pH	6.4				SU	1	_	Field Sampling	Total/NA
Field Temperature	30.5				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	400				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.06				mg/L	1		Field Sampling	Total/NA
Turbidity	8.77				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW6

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Field pH	6.4				SU	1	_	Field Sampling	Total/NA
Field Temperature	30.0				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	490				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.24				mg/L	1		Field Sampling	Total/NA
Turbidity	5.05				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW7R

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.10	I	0.46	0.083	ug/L	1	_	8270D	Total/NA
Total Petroleum Hydrocarbons (C8-C40)	3000		1000	240	ug/L	1		FL-PRO Micro	Total/NA
Field pH	6.5				SU	1		Field Sampling	Total/NA
Field Temperature	30.2				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	460				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.78				mg/L	1		Field Sampling	Total/NA
Turbidity	17.28				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons (C8-C40)	3.0		1.0	0.24	mg/L	1	_	FL-PRO Micro	Total/NA

Client Sample ID: MW8

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	800	<u> </u>	1000	240	ug/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									
Field pH	6.3				SU	1		Field Sampling	Total/NA
Field Temperature	29.6				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	450				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.41				mg/L	1		Field Sampling	Total/NA
Turbidity	6.78				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	0.80	1	1.0	0.24	mg/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									

Client Sample ID: MW12R

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Field pH	6.5				SU	1	_	Field Sampling	Total/NA	
Field Temperature	28.1				Degrees C	1		Field Sampling	Total/NA	
Specific Conductance	410				uS/cm	1		Field Sampling	Total/NA	
Oxygen, Dissolved	0.81				mg/L	1		Field Sampling	Total/NA	
Turbidity	3.15				NTU	1		Field Sampling	Total/NA	

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Tampa

7/16/2021

Page 6 of 32

3

Ė

6

Lab Sample ID: 660-112079-2

Lab Sample ID: 660-112079-3

Lab Sample ID: 660-112079-4

Lab Sample ID: 660-112079-5

8

9

11

12

1 /

Detection Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW28R Lab Sample ID: 660-112079-6

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	4800		1000	240	ug/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									
Field pH	6.3				SU	1		Field Sampling	Total/NA
Field Temperature	29.2				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	240				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.50				mg/L	1		Field Sampling	Total/NA
Turbidity	3.78				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	4.8		1.0	0.24	mg/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									

9

3

4

5

7

Q

10

12

4 4

A E

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW5

Surrogate

o-Terphenyl

n-C39

Lab Sample ID: 660-112079-1

Matrix: Water

Date Collected: 07/08/21 11:25	
Date Received: 07/09/21 15:50	

Analyte	nic Compounds (Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.25		1.0	0.25	ug/L	<u>-</u>		07/12/21 21:19	
Ethylbenzene	0.27		1.0	0.27	-			07/12/21 21:19	
Toluene	0.24		1.0		ug/L			07/12/21 21:19	
Xylenes, Total	0.50		4.0		ug/L			07/12/21 21:19	
Methyl tert-butyl ether	0.44		2.0	0.44	_			07/12/21 21:19	
m-Xylene & p-Xylene	0.36		2.0	0.36	-			07/12/21 21:19	
o-Xylene	0.50		2.0	0.50				07/12/21 21:19	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	100		70 - 130					07/12/21 21:19	
Dibromofluoromethane	105		70 - 130					07/12/21 21:19	
4-Bromofluorobenzene	98		70 - 130					07/12/21 21:19	
Method: 8270D - PAHs by GC/l	MS (SIM)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 13:50	
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 13:50	
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 13:50	
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 13:50	
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 13:50	
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 13:50	
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 13:50	
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 13:50	
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 13:50	
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 13:50	
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 13:50	
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 13:50	
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 13:50	
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 13:50	
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 13:50	
Benzo[g,h,i]perylene	0.064		0.46	0.064			07/12/21 07:21	07/12/21 13:50	
Indeno[1,2,3-cd]pyrene	0.046		0.19		ug/L		07/12/21 07:21	07/12/21 13:50	
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	_		07/12/21 07:21	07/12/21 13:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-methylnaphthalene-d10	70		19 - 110				07/12/21 07:21	07/12/21 13:50	
Fluoranthene-d10	67		35 - 140				07/12/21 07:21	07/12/21 13:50	
Method: FL-PRO Micro - Florio	la - Petroleum Ra	ınge Organ	ics (GC)						
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Petroleum Hydrocarbons (C8-C40)	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 16:37	
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Petroleum Hydrocarbons	0.24	11	1.0	0.04	mg/L		07/12/21 07:12	07/12/21 16:37	

Analyzed

07/12/21 07:12 07/12/21 16:37

07/12/21 07:12 07/12/21 16:37

Limits

66 - 139

40 - 129

%Recovery Qualifier

134

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW5

Lab Sample ID: 660-112079-1

Matrix: Water

Date Collected: 07/08/21 11:25 Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.4				SU			07/08/21 11:25	1
Field Temperature	30.5				Degrees C			07/08/21 11:25	1
Specific Conductance	400				uS/cm			07/08/21 11:25	1
Oxygen, Dissolved	1.06				mg/L			07/08/21 11:25	1
Turbidity	8.77				NTU			07/08/21 11:25	1

Lab Sample ID: 660-112079-2

Date Collected: 07/08/21 11:56 Matrix: Water

Date Received: 07/09/21 15:50

Client Sample ID: MW6

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 22:18	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 22:18	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 22:18	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 22:18	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 22:18	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 22:18	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 22:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130			-		07/12/21 22:18	1
Dibromofluoromethane	103		70 - 130					07/12/21 22:18	1
4-Bromofluorobenzene	101		70 - 130					07/12/21 22:18	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 11:42	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 11:42	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 11:42	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 11:42	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 11:42	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 11:42	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 11:42	1
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 11:42	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 11:42	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 11:42	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 11:42	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 11:42	1
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 11:42	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 11:42	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 11:42	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 11:42	1
Indeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 11:42	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 11:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	69		19 - 110				07/12/21 07:21	07/12/21 11:42	1
Fluoranthene-d10	80		35 - 140				07/12/21 07:21	07/12/21 11:42	1

6

5

7

10

12

13

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW6 Date Collected: 07/08/21 11:56

Date Received: 07/09/21 15:50

Lab Sample ID: 660-112079-2

Matrix: Water

Method: FL	-PRO Micro	- Florida -	Petroleum	Range (Organics (GC)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 17:19	1
(C8-C40)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	0.24	U	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 17:19	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	116		66 - 139	07/12/21 07:12	07/12/21 17:19	1
n-C39	98		40 - 129	07/12/21 07:12	07/12/21 17:19	1

Method: Field Sampling - Field Sampling

moundary roll camping in								
Analyte	Result Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.4			SU			07/08/21 11:56	1
Field Temperature	30.0			Degrees C			07/08/21 11:56	1
Specific Conductance	490			uS/cm			07/08/21 11:56	1
Oxygen, Dissolved	1.24			mg/L			07/08/21 11:56	1
Turbidity	5.05			NTU			07/08/21 11:56	1

Client Sample ID: MW7R Lab Sample ID: 660-112079-3

Date Collected: 07/08/21 12:24

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Org	anic Compounds ((GC/MS)							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 21:58	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 21:58	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 21:58	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 21:58	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 21:58	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 21:58	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 21:58	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		07/12/21 21:58	1
Dibromofluoromethane	102		70 - 130		07/12/21 21:58	1
4-Bromofluorobenzene	101		70 - 130		07/12/21 21:58	1

Method: 8270D - PAHs by GC/MS (SIM)

Welliou. 02/00 - PARS by GO	/IVIO (OIIVI)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 12:02	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 12:02	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 12:02	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 12:02	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:02	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:02	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 12:02	1
Anthracene	0.10	1	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 12:02	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 12:02	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 12:02	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:02	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 12:02	1

Page 10 of 32

Matrix: Water

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW7R Date Collected: 07/08/21 12:24

Date Received: 07/09/21 15:50

Lab Sample ID: 660-112079-3

Matrix: Water

Method: 8270D - PAHs	y GC/MS (SIM	(Continued)
----------------------	--------------	-------------

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 12:02	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 12:02	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 12:02	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 12:02	1
Indeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:02	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 12:02	1

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
2-methylnaphthalene-d10	75		19 - 110	07/12/21	07:21	07/12/21 12:02	1
Fluoranthene-d10	88		35 - 140	07/12/21	07:21	07/12/21 12:02	1

Method: FL-PRO Micro - Florida - Petroleum Range Organics (GC)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	3000		1000	240	ug/L		07/12/21 07:12	07/12/21 18:01	1
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	3.0		1.0	0.24	mg/L		07/12/21 07:12	07/12/21 18:01	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	127	66 - 139	07/12/21 07:12	07/12/21 18:01	1
n-C39	109	40 - 129	07/12/21 07:12	07/12/21 18:01	1

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.5				SU			07/08/21 12:24	1
Field Temperature	30.2				Degrees C			07/08/21 12:24	1
Specific Conductance	460				uS/cm			07/08/21 12:24	1
Oxygen, Dissolved	0.78				mg/L			07/08/21 12:24	1
Turbidity	17.28				NTU			07/08/21 12:24	1

Client Sample ID: MW8 Lab Sample ID: 660-112079-4 Date Collected: 07/08/21 10:54 **Matrix: Water**

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Organic Compounds (GC/MS)

Wethou. 6260B - Volatile Organ	ilic Collipoulius ((GC/IVIS)							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 21:39	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 21:39	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 21:39	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 21:39	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 21:39	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 21:39	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 21:39	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130		07/12/21 21:39	1
Dibromofluoromethane	105	70 - 130		07/12/21 21:39	1
4-Bromofluorobenzene	98	70 - 130		07/12/21 21:39	1

Eurofins TestAmerica, Tampa

Job ID: 660-112079-1

Project/Site: Combs Oil Company

Trojecticie: combo cii company

Client Sample ID: MW8
Date Collected: 07/08/21 10:54

Date Received: 07/09/21 15:50

Client: MDM Services

Surrogate

2-methylnaphthalene-d10

Fluoranthene-d10

Lab Sample ID: 660-112079-4

Prepared

07/12/21 07:21

07/12/21 07:21

Analyzed

07/12/21 12:22

07/12/21 12:22

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 12:22	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 12:22	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 12:22	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 12:22	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:22	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:22	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 12:22	1
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 12:22	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 12:22	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:22	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 12:22	1
Indeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:22	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 12:22	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	800	I	1000	240	ug/L		07/12/21 07:12	07/12/21 18:23	1
(C8-C40)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	0.80	I	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 18:23	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	134		66 - 139				07/12/21 07:12	07/12/21 18:23	1
n-C39	108		40 - 129				07/12/21 07:12	07/12/21 18:23	1

Limits

19 - 110

35 - 140

%Recovery Qualifier

71

84

Analyte	Result Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.3			SU			07/08/21 10:54	1
Field Temperature	29.6			Degrees C			07/08/21 10:54	1
Specific Conductance	450			uS/cm			07/08/21 10:54	1
Oxygen, Dissolved	1.41			mg/L			07/08/21 10:54	1
Turbidity	6.78			NTU			07/08/21 10:54	1

Client Sample ID: MW12R

Date Collected: 07/08/21 12:59

Lab Sample ID: 660-112079-5

Matrix: Water

Date Received: 07/09/21 15:50

Meth	od: 8260B - Volatile Organic	Compounds	(GC/MS)							
Analy	te	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benze	ne	0.25	U	1.0	0.25	ug/L			07/14/21 18:09	1
Ethylb	enzene	0.27	U	1.0	0.27	ug/L			07/14/21 18:09	1

Eurofins TestAmerica, Tampa

Page 12 of 32

2

3

5

7

9

11

12

14

Dil Fac

15

7/16/2021

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW12R Date Collected: 07/08/21 12:59

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Benzo[g,h,i]perylene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Benzo[a]pyrene

Chrysene

Lab Sample ID: 660-112079-5

Matrix: Water

Method: 8260B - Volatile Or Analyte	•	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.24	U	1.0	0.24	ug/L			07/14/21 18:09	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/14/21 18:09	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/14/21 18:09	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/14/21 18:09	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/14/21 18:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130					07/14/21 18:09	1
Dibromofluoromethane	106		70 - 130					07/14/21 18:09	1
4 B									
4-Bromofluorobenzene	100		70 - 130					07/14/21 18:09	1
4-Bromonuorobenzene : Method: 8270D - PAHs by G			70 - 130					07/14/21 18:09	1
	GC/MS (SIM)	Qualifier	70 ₋ 130 PQ L	MDL	Unit	D	Prepared	07/14/21 18:09 Analyzed	
: Method: 8270D - PAHs by G	GC/MS (SIM)			MDL 1.2		<u>D</u>	Prepared 07/12/21 07:21		
Method: 8270D - PAHs by G Analyte	GC/MS (SIM)	U	PQL		ug/L	<u>D</u>		Analyzed	
Method: 8270D - PAHs by G Analyte Naphthalene	GC/MS (SIM) Result 1.2	U U	PQL 3.7	1.2	ug/L ug/L	<u>D</u>	07/12/21 07:21	Analyzed 07/12/21 12:43	
Method: 8270D - PAHs by G Analyte Naphthalene 2-Methylnaphthalene	Result 1.2 0.62	U U U	PQL 3.7 0.69	1.2 0.62	ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21	Analyzed 07/12/21 12:43 07/12/21 12:43	
Method: 8270D - PAHs by G Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	Result 1.2 0.62 0.59	U U U	PQL 3.7 0.69 0.69	1.2 0.62 0.59	ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	Analyzed 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43	
Method: 8270D - PAHs by G Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	GC/MS (SIM) Result 1.2 0.62 0.59 0.075	U U U U	PQL 3.7 0.69 0.69 0.46	1.2 0.62 0.59 0.075	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	Analyzed 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43	
Method: 8270D - PAHs by G Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	Result 1.2 0.62 0.59 0.075 0.23	U U U U U	PQL 3.7 0.69 0.69 0.46 0.69	1.2 0.62 0.59 0.075 0.23	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	Analyzed 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43	
Method: 8270D - PAHs by G Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	Result 1.2 0.62 0.59 0.075 0.23 0.23	U U U U U U	PQL 3.7 0.69 0.69 0.46 0.69 0.69	1.2 0.62 0.59 0.075 0.23 0.23	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	Analyzed 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43	
Method: 8270D - PAHs by GAnalyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80	U U U U U U U U U U U U U U U	PQL 3.7 0.69 0.69 0.46 0.69 0.69 2.8	1.2 0.62 0.59 0.075 0.23 0.23	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	Analyzed 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43 07/12/21 12:43	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	55	19 - 110	07/12/21 07:21	07/12/21 12:43	1
Fluoranthene-d10	85	35 - 140	07/12/21 07:21	07/12/21 12:43	1

0.19

0.46

0.093

0.46

0.46

0.46

0.19

0.19

0.046 ug/L

0.063 ug/L

0.046 ug/L

0.077 ug/L

0.067 ug/L

0.064 ug/L

0.046 ug/L

0.071 ug/L

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 12:43

07/12/21 12:43

07/12/21 12:43

07/12/21 12:43

07/12/21 12:43

07/12/21 12:43

07/12/21 12:43

07/12/21 12:43

0.046 U

0.063 U

0.046 U

0.077 U

0.067 U

0.064 U

0.046 U

0.071 U

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 18:44	1
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	0.24	U	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	122		66 - 139				07/12/21 07:12	07/12/21 18:44	1
n-C39	96		40 - 129				07/12/21 07:12	07/12/21 18:44	1

Method: Fleid Sampling - Fleid Sai	mpiing								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.5				SU			07/08/21 12:59	1

Eurofins TestAmerica, Tampa

Page 13 of 32

6

5

7

9

1 4

12

14

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW12R

Lab Sample ID: 660-112079-5

Matrix: Water

Date Collected: 07/08/21 12:59 Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field Temperature	28.1				Degrees C			07/08/21 12:59	1
Specific Conductance	410				uS/cm			07/08/21 12:59	1
Oxygen, Dissolved	0.81				mg/L			07/08/21 12:59	1
Turbidity	3.15				NTU			07/08/21 12:59	1

Client Sample ID: MW28R Lab Sample ID: 660-112079-6

Date Collected: 07/08/21 13:28 **Matrix: Water**

Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/14/21 18:29	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/14/21 18:29	1
Toluene	0.24	U	1.0	0.24	ug/L			07/14/21 18:29	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/14/21 18:29	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/14/21 18:29	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/14/21 18:29	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/14/21 18:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			-		07/14/21 18:29	1
Dibromofluoromethane	107		70 - 130					07/14/21 18:29	1
4-Bromofluorobenzene	97		70 - 130					07/14/21 18:29	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 13:03	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 13:03	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 13:03	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 13:03	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 13:03	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 13:03	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 13:03	1
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 13:03	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 13:03	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 13:03	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 13:03	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 13:03	1
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 13:03	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 13:03	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 13:03	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 13:03	1
Indeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 13:03	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	74		19 - 110				07/12/21 07:21	07/12/21 13:03	1
Fluoranthene-d10	78		35 - 140				07/12/21 07:21	07/12/21 13:03	1

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW28R

Lab Sample ID: 660-112079-6

Matrix: Water

Date Collected: 07/08/21 13:28 Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	4800		1000	240	ug/L		07/12/21 07:12	07/12/21 19:05	1
(C8-C40)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	4.8		1.0	0.24	mg/L		07/12/21 07:12	07/12/21 19:05	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	133		66 - 139				07/12/21 07:12	07/12/21 19:05	1
n-C39	105		40 - 129				07/12/21 07:12	07/12/21 19:05	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.3				SU			07/08/21 13:28	1
Field Temperature	29.2				Degrees C			07/08/21 13:28	1
Specific Conductance	240				uS/cm			07/08/21 13:28	1
Oxygen, Dissolved	0.50				mg/L			07/08/21 13:28	1
Turbidity	3.78				NTU			07/08/21 13:28	1

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 660-240249/6

Matrix: Water

Analysis Batch: 240249

Client Sample ID: Method Blank
Prep Type: Total/NA

	МВ	МВ							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 14:51	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 14:51	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 14:51	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 14:51	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 14:51	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 14:51	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 14:51	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	70 - 130		07/12/21 14:51	1
Dibromofluoromethane	98	70 - 130		07/12/21 14:51	1
4-Bromofluorobenzene	98	70 - 130		07/12/21 14:51	1

Lab Sample ID: LCS 660-240249/4

Matrix: Water

Analysis Batch: 240249

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Benzene 10.0 9.82 ug/L 98 66 - 131 Ethylbenzene 10.0 9.56 96 ug/L 77 - 117 Toluene 10.0 10.0 100 71 - 119 ug/L Methyl tert-butyl ether 10.0 8.80 ug/L 88 63 - 123 m-Xylene & p-Xylene 10.0 9.31 ug/L 93 65 _ 130 ug/L o-Xylene 10.0 9.56 63 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	104	70 - 130
Dibromofluoromethane	100	70 - 130
4-Bromofluorobenzene	100	70 - 130

Lab Sample ID: 660-112083-C-1 MS

Matrix: Water

Analysis Batch: 240249

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.25	U	10.0	9.54	-	ug/L		95	66 - 131	
Ethylbenzene	0.27	U	10.0	9.53		ug/L		95	77 - 117	
Toluene	0.24	U	10.0	9.20		ug/L		92	71 - 119	
Methyl tert-butyl ether	0.44	U	10.0	9.59		ug/L		96	63 - 123	
m-Xylene & p-Xylene	0.36	U	10.0	9.50		ug/L		95	65 - 130	
o-Xylene	0.50	U	10.0	9.12		ug/L		91	63 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		70 - 130
Dibromofluoromethane	100		70 - 130
4-Bromofluorobenzene	98		70 - 130

Eurofins TestAmerica, Tampa

Page 16 of 32

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 660-112052-A-1 DU

Matrix: Water

Analysis Batch: 240249

Client Sample ID: Duplicate Prep Type: Total/NA

,	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Benzene	0.25	U	0.25	U	ug/L		NC	30
Ethylbenzene	0.27	U	0.27	U	ug/L		NC	30
Toluene	0.24	U	0.24	U	ug/L		NC	30
Xylenes, Total	0.50	U	0.50	U	ug/L		NC	30
Methyl tert-butyl ether	0.44	U	0.44	U	ug/L		NC	30
m-Xylene & p-Xylene	0.36	U	0.36	U	ug/L		NC	30
o-Xylene	0.50	U	0.50	U	ug/L		NC	30

DU DU

Surrogate	%Recovery Qu	ıalifier	Limits
Toluene-d8 (Surr)	101		70 - 130
Dibromofluoromethane	103		70 - 130
4-Bromofluorobenzene	100		70 - 130

Lab Sample ID: MB 660-240325/6

Matrix: Water

Analysis Batch: 240325

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier PQL MDL Unit D Prepared Analyzed Dil Fac 0.25 U 1.0 0.25 ug/L 07/14/21 13:36 Benzene Ethylbenzene 0.27 U 1.0 0.27 ug/L 07/14/21 13:36 07/14/21 13:36 Toluene 0.24 U 1.0 0.24 ug/L Xylenes, Total 0.50 U 4.0 0.50 ug/L 07/14/21 13:36 Methyl tert-butyl ether 2.0 07/14/21 13:36 0.44 U 0.44 ug/L m-Xylene & p-Xylene 0.36 U 2.0 0.36 ug/L 07/14/21 13:36 o-Xylene 0.50 U 2.0 07/14/21 13:36 0.50 ug/L

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	99		70 - 130			07/14/21 13:36	1	
Dibromofluoromethane	102		70 - 130			07/14/21 13:36	1	
4-Bromofluorobenzene	101		70 - 130			07/14/21 13:36	1	

LCS LCS

10.6

10.2

10.3

9.70

10.3

10.4

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

104

Spike

Added

10.0

10.0

10.0

10.0

10.0

Lab Sample ID: LCS 660-240325/4

Matrix: Water

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Methyl tert-butyl ether

m-Xylene & p-Xylene

Analysis Batch: 240325

Client Sample ID: Lab Control Sample Prep Type: Total/NA

% Doo

63 - 130

	%Rec.	
Rec	Limits	
106	66 - 131	
102	77 - 117	
103	71 - 119	
97	63 - 123	
103	65 130	

LCS LCS

	200 200	
Surrogate	%Recovery Qualified	r Limits
Toluene-d8 (Surr)	99	70 - 130
Dibromofluoromethane	101	70 - 130
4-Bromofluorobenzene	101	70 - 130

Eurofins TestAmerica, Tampa

QC Sample Results

Job ID: 660-112079-1 Client: MDM Services

Project/Site: Combs Oil Company

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 660-112139-C-2 MS

Matrix: Water

Analysis Batch: 240325

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS %Rec. Sample Sample Spike MS Result Qualifier Analyte Added Result Qualifier %Rec Limits Unit Benzene 0.25 U 10.0 10.8 ug/L 108 66 - 131 Ethylbenzene 0.27 U 10.0 11.4 ug/L 114 77 - 117 0.24 U 71 - 119 10.0 Toluene 10.7 ug/L 107 Methyl tert-butyl ether 0.44 U 10.0 9.80 ug/L 98 63 - 123 m-Xylene & p-Xylene 0.36 U 10.0 ug/L 111 65 - 13011 1 10.0 10.7 107 o-Xylene 0.50 U ug/L 63 - 130

MS MS Qualifier Surrogate %Recovery Limits 70 - 130 Toluene-d8 (Surr) 98 101 70 - 130 Dibromofluoromethane 4-Bromofluorobenzene 99 70 - 130

Lab Sample ID: 660-112139-C-1 DU

Matrix: Water

Analysis Batch: 240325

Client Sample ID: Duplicate

Prep Type: Total/NA

Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit D Benzene 0.25 U 0.25 U ug/L NC 30 ug/L Ethylbenzene 0.27 U 0.27 U NC 30 0.24 U NC Toluene 0.24 U ug/L 30 Xylenes, Total 0.50 U 0.50 U ug/L NC 30 Methyl tert-butyl ether 0 44 U NC 30 0 44 U ug/L m-Xylene & p-Xylene 0.36 U 0.36 U ug/L NC 30 o-Xylene 0.50 U 0.50 U ug/L NC 30

DU DU Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 100 70 - 130 Dibromofluoromethane 103 70 - 1304-Bromofluorobenzene 70 - 130

Method: 8270D - PAHs by GC/MS (SIM)

Lab Sample ID: MB 660-240230/1-A

Matrix: Water

Analysis Batch: 240241

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 240230

мв мв Dil Fac Analyte Result Qualifier POL MDL Unit Prepared Analyzed Naphthalene 1.3 U 4.0 1.3 ug/L 07/12/21 07:21 07/12/21 11:04 2-Methylnaphthalene 0.67 U 0.75 07/12/21 07:21 07/12/21 11:04 0.67 ug/L 1-Methylnaphthalene 0.64 0.75 07/12/21 07:21 07/12/21 11:04 0.64 ug/L 07/12/21 11:04 Acenaphthylene 0.081 U 0.50 07/12/21 07:21 0.081 ug/L Acenaphthene 0.25 U 0.75 07/12/21 07:21 07/12/21 11:04 0.25 ug/L Fluorene 0.25 U 0.75 0.25 ug/L 07/12/21 07:21 07/12/21 11:04 Phenanthrene 0.86 U 3.0 0.86 ug/L 07/12/21 07:21 07/12/21 11:04 Anthracene 0.090 U 0.50 0.090 ug/L 07/12/21 07:21 07/12/21 11:04 Fluoranthene 0.23 U 0.75 0.23 ug/L 07/12/21 07:21 07/12/21 11:04 Pyrene 0.22 U 0.50 0.22 ug/L 07/12/21 07:21 07/12/21 11:04 0.050 U 07/12/21 07:21 07/12/21 11:04 Benzo[a]anthracene 0.20 0.050 ug/L

Eurofins TestAmerica, Tampa

Page 18 of 32

7/16/2021

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Lab Sample ID: MB 660-240230/1-A

Matrix: Water

Analysis Batch: 240241

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 240230

	МВ	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	0.068	U	0.50	0.068	ug/L		07/12/21 07:21	07/12/21 11:04	1
Benzo[b]fluoranthene	0.050	U	0.10	0.050	ug/L		07/12/21 07:21	07/12/21 11:04	1
Benzo[k]fluoranthene	0.083	U	0.50	0.083	ug/L		07/12/21 07:21	07/12/21 11:04	1
Benzo[a]pyrene	0.073	U	0.50	0.073	ug/L		07/12/21 07:21	07/12/21 11:04	1
Benzo[g,h,i]perylene	0.070	U	0.50	0.070	ug/L		07/12/21 07:21	07/12/21 11:04	1
Indeno[1,2,3-cd]pyrene	0.050	U	0.20	0.050	ug/L		07/12/21 07:21	07/12/21 11:04	1
Dibenz(a,h)anthracene	0.077	U	0.20	0.077	ug/L		07/12/21 07:21	07/12/21 11:04	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	56		19 - 110	07/12/21 07:21	07/12/21 11:04	1
Fluoranthene-d10	59		35 - 140	07/12/21 07:21	07/12/21 11:04	1

Lab Sample ID: LCS 660-240230/2-A

Matrix: Water

Analysis Batch: 240241

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 240230

Analysis Batch: 240241							Prep Bato	cn: 240230
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	20.0	13.1	-	ug/L		66	32 - 110	
2-Methylnaphthalene	20.0	12.2		ug/L		61	30 - 110	
1-Methylnaphthalene	20.0	12.3		ug/L		61	31 - 110	
Acenaphthylene	20.0	14.5		ug/L		73	35 - 110	
Acenaphthene	20.0	13.6		ug/L		68	35 - 110	
Fluorene	20.0	14.8		ug/L		74	38 - 110	
Phenanthrene	20.0	13.9		ug/L		70	39 - 110	
Anthracene	20.0	13.9		ug/L		69	38 - 110	
Fluoranthene	20.0	12.7		ug/L		63	41 - 110	
Pyrene	20.0	16.0		ug/L		80	46 - 110	
Benzo[a]anthracene	20.0	16.5		ug/L		82	47 - 110	
Chrysene	20.0	15.9		ug/L		79	48 - 110	
Benzo[b]fluoranthene	20.0	17.5		ug/L		88	47 - 110	
Benzo[k]fluoranthene	20.0	16.2		ug/L		81	44 - 110	
Benzo[a]pyrene	20.0	17.5		ug/L		87	45 - 110	
Benzo[g,h,i]perylene	20.0	17.2		ug/L		86	47 - 110	
Indeno[1,2,3-cd]pyrene	20.0	16.1		ug/L		81	47 - 112	
Dibenz(a,h)anthracene	20.0	16.4		ug/L		82	47 - 110	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-methylnaphthalene-d10	67	19 - 110
Fluoranthene-d10	68	35 - 140

Lab Sample ID: 660-112085-A-1-E MS

Matrix: Water

Analysis Batch: 240241

Client Sample	ID: Matrix Spike
---------------	------------------

Prep Type: Total/NA Prep Batch: 240230

7/16/2021

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.2	U	20.0	12.5		ug/L		62	32 - 110	
2-Methylnaphthalene	0.62	U	20.0	11.7		ug/L		59	30 - 110	
1-Methylnaphthalene	0.59	U	20.0	11.8		ug/L		59	31 - 110	

Eurofins TestAmerica, Tampa

Page 19 of 32

2

3

_

6

8

10

12

.

Client: MDM Services Job ID: 660-112079-1

MS MS

Project/Site: Combs Oil Company

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Lab Sample ID: 660-112085-A-1-E MS

Matrix: Water

Analysis Batch: 240241

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 240230

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	0.075	U	20.0	13.8		ug/L		69	35 _ 110	
Acenaphthene	0.23	U	20.0	13.0		ug/L		65	35 - 110	
Fluorene	0.23	U	20.0	14.1		ug/L		70	38 _ 110	
Phenanthrene	0.80	U	20.0	13.5		ug/L		68	39 _ 110	
Anthracene	0.083	U	20.0	13.5		ug/L		68	38 - 110	
Fluoranthene	0.22	U	20.0	12.8		ug/L		64	41 - 110	
Pyrene	0.21	U	20.0	16.2		ug/L		81	46 - 110	
Benzo[a]anthracene	0.046	U	20.0	16.7		ug/L		83	47 - 110	
Chrysene	0.063	U	20.0	16.1		ug/L		80	48 - 110	
Benzo[b]fluoranthene	0.046	U	20.0	17.8		ug/L		89	47 - 110	
Benzo[k]fluoranthene	0.077	U	20.0	16.2		ug/L		81	44 - 110	
Benzo[a]pyrene	0.067	U	20.0	17.7		ug/L		88	45 - 110	
Benzo[g,h,i]perylene	0.064	U	20.0	17.4		ug/L		87	47 - 110	
Indeno[1,2,3-cd]pyrene	0.046	U	20.0	16.4		ug/L		82	47 _ 112	
Dibenz(a,h)anthracene	0.071	U	20.0	16.6		ug/L		83	47 - 110	

Spike

MS MS

Sample Sample

Surrogate %Recovery Qualifier Limits 2-methylnaphthalene-d10 65 19 - 110 Fluoranthene-d10 69 35 - 140

Lab Sample ID: 660-112085-A-1-F MSD

Matrix: Water

Analysis Batch: 240241

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 240230

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	1.2	U	20.0	11.0		ug/L		55	32 - 110	13	35
2-Methylnaphthalene	0.62	U	20.0	10.3		ug/L		51	30 - 110	13	30
1-Methylnaphthalene	0.59	U	20.0	10.2		ug/L		51	31 - 110	14	25
Acenaphthylene	0.075	U	20.0	12.1		ug/L		61	35 - 110	13	25
Acenaphthene	0.23	U	20.0	11.3		ug/L		56	35 - 110	14	25
Fluorene	0.23	U	20.0	12.7		ug/L		64	38 - 110	10	25
Phenanthrene	0.80	U	20.0	13.1		ug/L		65	39 - 110	4	27
Anthracene	0.083	U	20.0	13.2		ug/L		66	38 - 110	3	24
Fluoranthene	0.22	U	20.0	13.0		ug/L		65	41 - 110	1	24
Pyrene	0.21	U	20.0	16.7		ug/L		83	46 - 110	3	21
Benzo[a]anthracene	0.046	U	20.0	17.3		ug/L		87	47 - 110	4	19
Chrysene	0.063	U	20.0	16.6		ug/L		83	48 - 110	3	20
Benzo[b]fluoranthene	0.046	U	20.0	18.5		ug/L		92	47 - 110	4	20
Benzo[k]fluoranthene	0.077	U	20.0	16.7		ug/L		84	44 - 110	3	20
Benzo[a]pyrene	0.067	U	20.0	18.3		ug/L		92	45 - 110	3	20
Benzo[g,h,i]perylene	0.064	U	20.0	18.0		ug/L		90	47 - 110	3	21
Indeno[1,2,3-cd]pyrene	0.046	U	20.0	17.2		ug/L		86	47 - 112	4	21
Dibenz(a,h)anthracene	0.071	U	20.0	17.2		ug/L		86	47 - 110	4	22
	4400										

MSD MSD Limits Surrogate %Recovery Qualifier 2-methylnaphthalene-d10 56 19 - 110 Fluoranthene-d10 69 35 - 140

Eurofins TestAmerica, Tampa

Page 20 of 32

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Method: FL-PRO Micro - Florida - Petroleum Range Organics (GC)

Lab Sample ID: MB 660-240227/2-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA** Analysis Batch: 240244 **Prep Batch: 240227**

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 16:15	1
(C8-C40)									
	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	0.24	U	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 16:15	1
(C8-C40)									

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	128		66 - 139	07/12/21 07:12	07/12/21 16:15	1
n-C39	93		40 - 129	07/12/21 07:12	07/12/21 16:15	1

Lab Sample ID: LCS 660-240227/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 240244							Prep Batcl	h: 240227
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Petroleum Hydrocarbons	24300	27000		ug/L		111	65 - 119	
(C8-C40)								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Petroleum Hydrocarbons	24	27.0		mg/L		111	65 _ 119	
(C8-C40)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	128		66 - 139
n-C39	100		40 - 129

Lab Sample ID: 660-112079-1 MS Client Sample ID: MW5 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 240244 **Prep Batch: 240227**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Petroleum Hydrocarbons	240	U	24200	27600		ug/L		114	65 - 123	
(C8-C40)										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Petroleum Hydrocarbons	0.24	U	24	27.6		mg/L		114	65 - 123	
(C8-C40)										

MS MS

Surrogate	%Recovery Qu	ıalifier	Limits
o-Terphenyl	138		66 - 139
n-C39	115		40 - 129

7/16/2021

QC Sample Results

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Method: FL-PRO Micro - Florida - Petroleum Range Organics (GC) (Continued)

Lab Sample ID: 660-112079-2 DI	J						Client Sam	iple ID	MW6
Matrix: Water							Prep Ty	pe: To	tal/NA
Analysis Batch: 240244							Prep B	atch: 2	40227
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Petroleum Hydrocarbons	240	U	240	U	ua/l			NC.	20

	Sample	Sample	DU	טט				KFD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Petroleum Hydrocarbons	240	U	240	U	ug/L		NC	20
(C8-C40)								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Petroleum Hydrocarbons	0.24	U	0.24	U	mg/L		 NC	20
(C8-C40)								

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	116		66 - 139
n-C39	90		40 - 129

QC Association Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

GC/MS VOA

Analysis Batch: 240249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	8260B	
660-112079-2	MW6	Total/NA	Water	8260B	
660-112079-3	MW7R	Total/NA	Water	8260B	
660-112079-4	MW8	Total/NA	Water	8260B	
MB 660-240249/6	Method Blank	Total/NA	Water	8260B	
LCS 660-240249/4	Lab Control Sample	Total/NA	Water	8260B	
660-112083-C-1 MS	Matrix Spike	Total/NA	Water	8260B	
660-112052-A-1 DU	Duplicate	Total/NA	Water	8260B	

Analysis Batch: 240325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-5	MW12R	Total/NA	Water	8260B	<u> </u>
660-112079-6	MW28R	Total/NA	Water	8260B	
MB 660-240325/6	Method Blank	Total/NA	Water	8260B	
LCS 660-240325/4	Lab Control Sample	Total/NA	Water	8260B	
660-112139-C-2 MS	Matrix Spike	Total/NA	Water	8260B	
660-112139-C-1 DU	Duplicate	Total/NA	Water	8260B	

GC/MS Semi VOA

Analysis Batch: 240224

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-2	MW6	Total/NA	Water	8270D	240230
660-112079-3	MW7R	Total/NA	Water	8270D	240230
660-112079-4	MW8	Total/NA	Water	8270D	240230
660-112079-5	MW12R	Total/NA	Water	8270D	240230
660-112079-6	MW28R	Total/NA	Water	8270D	240230

Prep Batch: 240230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	3510C	
660-112079-2	MW6	Total/NA	Water	3510C	
660-112079-3	MW7R	Total/NA	Water	3510C	
660-112079-4	MW8	Total/NA	Water	3510C	
660-112079-5	MW12R	Total/NA	Water	3510C	
660-112079-6	MW28R	Total/NA	Water	3510C	
MB 660-240230/1-A	Method Blank	Total/NA	Water	3510C	
LCS 660-240230/2-A	Lab Control Sample	Total/NA	Water	3510C	
660-112085-A-1-E MS	Matrix Spike	Total/NA	Water	3510C	
660-112085-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	3510C	

Analysis Batch: 240241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	8270D	240230
MB 660-240230/1-A	Method Blank	Total/NA	Water	8270D	240230
LCS 660-240230/2-A	Lab Control Sample	Total/NA	Water	8270D	240230
660-112085-A-1-E MS	Matrix Spike	Total/NA	Water	8270D	240230
660-112085-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	8270D	240230

Page 23 of 32

QC Association Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

GC Semi VOA

Prep Batch: 240227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	MicroExt Prep	
660-112079-2	MW6	Total/NA	Water	MicroExt Prep	
660-112079-3	MW7R	Total/NA	Water	MicroExt Prep	
660-112079-4	MW8	Total/NA	Water	MicroExt Prep	
660-112079-5	MW12R	Total/NA	Water	MicroExt Prep	
660-112079-6	MW28R	Total/NA	Water	MicroExt Prep	
MB 660-240227/2-A	Method Blank	Total/NA	Water	MicroExt Prep	
LCS 660-240227/1-A	Lab Control Sample	Total/NA	Water	MicroExt Prep	
660-112079-1 MS	MW5	Total/NA	Water	MicroExt Prep	
660-112079-2 DU	MW6	Total/NA	Water	MicroExt Prep	

Analysis Batch: 240244

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	FL-PRO Micro	240227
660-112079-2	MW6	Total/NA	Water	FL-PRO Micro	240227
660-112079-3	MW7R	Total/NA	Water	FL-PRO Micro	240227
660-112079-4	MW8	Total/NA	Water	FL-PRO Micro	240227
660-112079-5	MW12R	Total/NA	Water	FL-PRO Micro	240227
660-112079-6	MW28R	Total/NA	Water	FL-PRO Micro	240227
MB 660-240227/2-A	Method Blank	Total/NA	Water	FL-PRO Micro	240227
LCS 660-240227/1-A	Lab Control Sample	Total/NA	Water	FL-PRO Micro	240227
660-112079-1 MS	MW5	Total/NA	Water	FL-PRO Micro	240227
660-112079-2 DU	MW6	Total/NA	Water	FL-PRO Micro	240227

Field Service / Mobile Lab

Analysis Batch: 240278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
660-112079-1	MW5	Total/NA	Water	Field Sampling
660-112079-2	MW6	Total/NA	Water	Field Sampling
660-112079-3	MW7R	Total/NA	Water	Field Sampling
660-112079-4	MW8	Total/NA	Water	Field Sampling
660-112079-5	MW12R	Total/NA	Water	Field Sampling
660-112079-6	MW28R	Total/NA	Water	Field Sampling

Page 24 of 32

10

Project/Site: Combs Oil Company

Client Sample ID: MW5

Client: MDM Services

Lab Sample ID: 660-112079-1

Matrix: Water

Date Collected: 07/08/21 11:25 Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 21:19	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240241	07/12/21 13:50	K1P	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 16:37	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 11:25	FS	TAL TAM

Lab Sample ID: 660-112079-2

Lab Sample ID: 660-112079-3

Matrix: Water

Matrix: Water

Client Sample ID: MW6 Date Collected: 07/08/21 11:56

Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 22:18	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 11:42	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 17:19	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 11:56	FS	TAL TAM

Client Sample ID: MW7R

Date Collected: 07/08/21 12:24

Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 21:58	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 12:02	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 18:01	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 12:24	FS	TAL TAM

Client Sample	ID: MW8		Lab Sample ID: 660-112079-4
Date Collected: 07	7/08/21 10:5	4	Matrix: Water
Date Received: 07	7/09/21 15:5	0	
	Ratch	Ratch	Ratch Dranged

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			240249	07/12/21 21:39	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 12:22	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 18:23	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 10:54	FS	TAL TAM

Lab Chronicle

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Client Sample ID: MW12R

Date Received: 07/09/21 15:50

Lab Sample ID: 660-112079-5 Date Collected: 07/08/21 12:59

240278

07/08/21 12:59

FS

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 8260B 240325 K1P Total/NA Analysis 07/14/21 18:09 TAL TAM Total/NA Prep 3510C 240230 07/12/21 07:21 JΡ TAL TAM Total/NA Analysis 8270D 240224 07/12/21 12:43 MWJ TAL TAM 1 Total/NA 240227 07/12/21 07:12 TAL TAM Prep MicroExt Prep MDS TAL TAM Total/NA Analysis FL-PRO Micro 1 240244 07/12/21 18:44 MDS

Client Sample ID: MW28R Lab Sample ID: 660-112079-6 Date Collected: 07/08/21 13:28

Date Received: 07/09/21 15:50

Analysis

Field Sampling

Total/NA

Matrix: Water

TAL TAM

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240325	07/14/21 18:29	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 13:03	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 19:05	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 13:28	FS	TAL TAM

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Method Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL TAM
8270D	PAHs by GC/MS (SIM)	SW846	TAL TAM
FL-PRO Micro	Florida - Petroleum Range Organics (GC)	FL-DEP	TAL TAM
Field Sampling	Field Sampling	EPA	TAL TAM
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL TAM
5030B	Purge and Trap	SW846	TAL TAM
MicroExt Prep	Microextraction	SW846	TAL TAM

Protocol References:

EPA = US Environmental Protection Agency

FL-DEP = State Of Florida Department Of Environmental Protection, Florida Administrative Code.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

3

4

5

7

8

11

12

16

Accreditation/Certification Summary

Client: MDM Services Job ID: 660-112079-1

Project/Site: Combs Oil Company

Laboratory: Eurofins TestAmerica, Tampa

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date				
Florida		ELAP	E84282	06-30-22				
• ,	•	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which				
the agency does not of Analysis Method	Prep Method	Matrix	Analyte					
Field Sampling	<u></u>	Water	Field pH					
Field Sampling		Water	Field Temperature					
Field Sampling		Water	Oxygen, Dissolved	Oxygen, Dissolved				
. ioia oaiiipiiiig				Specific Conductance				
Field Sampling		Water	Specific Conductance					

Phone: 813-885-7427 Fax: 813-885-7049

6712 Benjamin Road Suite 100

Tampa, FL 33634

Chain of Custody Record

die eurofins

Environment Testing

Bans Carrier Tracking No(s): Client Information Jones, Matt 660-100555-32178.1 Client Contact: Phone: State of Origin: Page: Jeff Morgan matthew.jones@eurofinset.com Page 1 of 1 Company: PWSID 26815 MDM Services **Analysis Requested** Address: Due Date Requested: Preservation Codes: 1055 Kathleen Road A - HCL City: TAT Requested (days): B - NaOH N - None Lakeland C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na2O4S Aromatic Hydrocarbons FL, 33805 Compliance Project: A Yes A No E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 Phone: G - Amchlor S - H2SQ4 B8C14B H - Ascorbic Acid T - TSP Dodecahydrate wo#: 208/5 Email: I - Ice U - Acetone jeff.morgan@mdmservices.com J - DI Water V - MCAA K - EDTA W - pH 4-5 Project Name L - EDA Z - other (specify) Combs Oil Company 66016498 8270D_SIM - Polycyclic Other: 6 Matrix Sample Type (W=water, S=solid, (C=comp, Sample Sample Identification Sample Date Time G=grab) BT=Tissue, A=Air Special Instructions/Note: Preservation Code: 6 11 25 Mu 11:50 6 1 9. 12:54 13:22 4 Loc: 660 112079 660-112079 Chain of Custody Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Skin Irritant Poison B Unknown Radiological Non-Hazard Flammable Disposal By Lab Return To Client Archive For Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Method of Shipment: Relinquished by Date/Time: Relinquished by: Date/Time: Company Relinquished by: Date/Time Received by: Company Custody Seals Intact: Custody Seal No .: Cooler Temperature(s) °C and Other Remarks Δ Yes Δ No

7/16/202

Page 29 of 32

Ver: 11/01/2020

\$ 1881 BIR BIR BIRK BIRK BRIL HERRI HERRI HERRI HERRI BERKE HERRI HERRI

	Pε
•	age 30 of
	f 32

$\overline{}$
\leq
$\overline{}$
Υ.
И.
C
6/202
_

712 Benjamin Road Suite 100 ⁻ ampa, FL 33634 ⁻ hone: 813-885-7427 Fax: 813-885-7049	(Chain (of Cus	stody I	Rec	COI	rd										eurofins	Environment Test	ing
Client Information (Sub Contract Lab)	Sampler:				PM:	_	_					Carrie	r Tracki	ng No(s)	:		COC No:		
Client Contact:	Phone:			Jor E-M	nes, N	/latt											660-130782.1		
Shipping/Receiving company:						.jone	es@	eurofins	et.con	n		State	of Origir	1:			Page:		
estAmerica Laboratories, Inc.					Acc	redita	tions	Required (Page 1 of 1 Job #:		
ddress: l355 McLemore Drive,	Due Date Reques	ted:			INE	LAP	- FI	lorida									660-112079-1		
Sity:	7/18/2021	4							An	alys	is Re	ques	ted				Preservation Cod		
Pensacola	TAT Requested (c	iays):				10				T				T			A - HCL B - NaOH	M - Hexane N - None	
itate, Zip: FL, 32514																A	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S	
hone:	PO #:				41		(plo							1			E - NaHSO4	Q - Na2SO3	
#50-474-1001(Tel) 850-478-2671(Fax)						M	G.										F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4	
maii.	WO #:				그		TPHCWG (Hold)					1					H - Ascorbic Acid I - Ice	T - TSP Dodecahydra U - Acetone	te
roject Name:	Project #:									1	1			ŀ		2	J - DI Water K - EDTA	V - MCAA	
Combs Oil Company	66016498				٥	8	P.			- [afin	L - EDA	W - pH 4-5 Z - other (specify)	
	SSOW#:				Sample (Yes or No	3	G_W									Som	Other:		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Al	d Filtered	Perform MS/MS	TPHCWG/TPHCWG_W_Prep				!					Total Number of	1		
	><	><		ation Code:	X	₹ T										E	Special In:	structions/Note:	
MW5 (660-112079-1)	7/8/21	11:25		Water	1		Х							1000		-			
/IW6 (660-112079-2)	7/8/21	11:56		Water	+	+			\vdash	\dashv	+	+	_	-	\vdash	3	-		
/W7R (660-112079-3)	7/8/21	Eastern 12:24		Water	+	\dashv	^ X		\vdash	+	+	+	+	-	\vdash	3			
/IW8 (660-112079-4)	7/8/21	Eastern 10:54		Water	+	+	X		\vdash	\dashv	+	++	+	-	-	3			
/W12R (660-112079-5)	7/8/21	Eastern 12:59		Water	╫	+	^ X		\vdash	\dashv	+	++	\dashv	-	$\vdash \vdash$	3			
MW28R (660-112079-6)	7/8/21	Eastern 13:28		Water	+	+	^ x	-	\vdash	+	+-	+	-	+-		3			
		Eastern			+	+	_		\vdash	+	+-	+	-	-		3			
					+	\dashv	-		\vdash	-	+	+	+	+-	\vdash	(2)			
				 	+	\dashv	-		\vdash	+	-	+	_	-	-				
lote: Since laboratory accreditations are subject to change. Eurofine TootAmerica			L		Ш											34			
lote: Since laboratory accreditations are subject to change, Eurofins TestAmerica laintain accreditation in the State of Origin listed above for analysis/tests/matrix b estAmerica attention immediately. If all requested accreditations are current to d	eing analyzed, the s ate, return the signe	nip of method, as samples must be ed Chain of Cust	nalyte & accre e shipped bacl tody attesting t	ditation compli k to the Eurofir to said complic	iance u is Test ance t	ipon o Amer o Eur	out su rica la rofins	ubcontract I aboratory or TestAmeri	aborato r other i ca.	ories. T instructi	his sam ons will	ple shipi be provi	ment is t	forwarde ny chang	d under o	chain-o reditati	f-custody. If the labora ion status should be bro	tory does not currently bught to Eurofins	
Possible Hazard Identification										foo m	av. ha		1 16						
Inconfirmed							\Box_{R}	eturn To	Clioni	iee iii					es are r	t .	ed longer than 1	month)	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delive	rable Rank: 2	2			Spec		Instructio				Dispos ents:	ai By i	_ab		Arci	hive For	Months	
mpty Kit Relinquished by:		Date:			Tim								Method	of Shipm	ent				
ellinquished by:	Date/Time:	2117	2.)	Company	0	F	Rece	ived by:	100	de	1				/Time: 🛶		10.00	IComposition 1	
delinquished by:	7/12/	0/ (/,	0)	Company	1)	_	D :	1	IIW	W	1/WC	rife	/			113	121439	Company	
telinquished by:				Company			Kece	ived by:						Date/	/Time:			Company	
	Date/Time:			Company		F	Rece	ived by:						Date/	/Time:			Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						-	Coole	er Tempera	ture(s)	°C and	Other R	emarks:	٠	700	1170				
													2.	100	1110	7			

Ver: 11/01/2020

12

Well No.	Facility ID	Facility Name		Results	
mus		Combo dil	ρН	64	SU
			Temperature, Water	30.5	Deg C
			Specific Conductance	0.40	ms/cm
			Dissolved Oxygen	1.00	mg/l
			Turbidity	8.77	NTU
ouv 6			рН	64	su
			Temperature, Water	30.0	Deg C
			Specific Conductance	6.49	ms/cm
			Dissolved Oxygen	1.24	mg/l
			Turbidity	5.05	NTU
MURR			рН	6.5	SU
			Temperature, Water	30.2	Deg C
			Specific Conductance	0.46	ms/cm
			Dissolved Oxygen	0.78	mg/l
			Turbidity	17.78	NTU
MWY			рН	4.3	SU
			Temperature, Water	29.6	Deg C
			Specific Conductance	6.41	ms/cm
			Dissolved Oxygen	1.41	mg/l
			Turbidity	6.78	NTU
m 12p			рН	6.5	SU
			Temperature, Water	281	Deg C
			Specific Conductance	0.41	ms/cm
			Dissolved Oxygen	0.41	mg/l
			Turbidity	3.15	NTU
n~ Ish			На	6.3	SU
			Temperature, Water	79.2	Deg C
			Specific Conductance	0.24	ms/cm
			Dissolved Oxygen	0.50	mg/l
			Turbidity	3.76	NTU
			-,11		SU
			/ // /////////////////////////////////	INIT TOTAL PROGRAMME	Deg C

660-112079 Field Shoot

660-112079 Field

	_ 6
Temperature, Water	2g C
Specific Conductance	ms/cm
Dissolved Oxygen	mg/l
Turbidity	NTU
рН	SU
Temperature, Water	Deg C
Specific Conductance	ms/cm
Dissolved Oxygen	mg/l
Turbidity	NTU
рН	SU
Temperature, Water	Deg C
Specific Conductance	ms/cm
Dissolved Oxygen	mg/l
Turbidity	NTU

Client: MDM Services

List Source: Eurofins TestAmerica, Tampa

Job Number: 660-112079-1

Login Number: 112079 List Number: 1

Creator: Ratchford, Hunter

Creator. Ratchiord, Hunter		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

SITE						ITE					
NAME: COM	nbs Oil				L	ocation: 52	25 E Mai	n St, Immo	okalee, F	<u>-L</u>	
WELL NO: M	W-5			SAMPLE	ID: MW-				DATE:	7/4/2	,
						GING DA				*e	
WELL		TUBING			L SCREEN			DEPTH TER (feet): 6	Proc.	URGE PUMP TY	
DIAMETER (inc			TER (inches): (eet to 11 fee		WELL CAPACITY		R BAILER: PP	
(only fill out if a						_				54.	
EQUIDMENT V	OLUME DU	BCE. 4 EOU	= (11 = PUMP VOLUM		O-5Z	feet) X	0.65 BING LENGTH) +	gallons/foot		gallons
(only fill out if a		NGE. FEGU	=	gallons + (IC + (100IN	gallons/foot		feet) +	gallons		_
INITIAL PUMP	OR TUBING		-	MP OR TUBING	10	PURGIN		PURGING	gallons	= gallon TOTAL VOL	
DEPTH IN WE		2.5		WELL (feet):	1.5		DAT: //:0;	ENDED A	11 -5	PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or _mS/cm	DISSOLVED OXYGEN (circle units) Mg/L or % saturation	TURBIC (NTU:		
11:19	3.00	≤ .∞	,25	665	6.4	32.5	0,40	1.10	10.0		None
* F 7	.75	3.75	.25	6-65	6.4	30.5	0.40	1.09	9.40	, –	
11:25	. 75	4.50	-25	6-45	6.4	30.5	040	1.00	8.77	_	_
			•								
								ļ			
								ļ			
						ļ		1			
						ļ		1			
WELL CAPAC	TTV (Callana	Dar Faath: 0	75" - 0.00:	47 - 0.04: 4	25" = 0.06;	2" = 0.16;	3" = 0.37:	4" = 0.65; 5"	= 1.02; 6"	- 4 47: 490	- 5 00
TUBING INSID	E DIA. CAP	ACITY (Gal./F	t.): 1/8" = 0.02;	006; 3/16" = 1		2" = 0.16; 1/4" = 0.0026;	5/16" = 0.0				= 5.88 = 0.016
PURGING EQ	UIPMENT CO	DDES: B	Bailer; B	P = Bladder Pun			bmersible Pum	p; PP = Peri	staltic Pump;	O = Other (Specify)
CAMPLED BY	(DDINT) / A/	CILIATION.		CANADI EDIPS		PLING DA	ATA			7	
SAMPLED BY	(PRINT) / AI	FEILIATION:		SAMPLER(8)	SIGNATURI	E(S):		SAMPLING		SAMPLIN	G ,~
Derek Dav	/is/MDM	Services						INITIATED	AT: //(2)	ENDED A	T: //:31
PUMP OR TUE DEPTH IN WE		5-5		TUBING MATERIAL CO	ne HDDI	=		D-FILTERED: ation Equipment 1		FILTER SIZ	.Έ: μm
FIELD DECON		N: PUMI	P Y <u>N</u>		TUBING	Y <u>N</u> (repla		DUPLICAT		N	
SAMPLI	E CONTAINE	R SPECIFICA		SAMPLE	PRESERV	ATION (includ	· ·	****			CAMBLE SUBS
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATI USED	IVE	TOTAL VOL ED IN FIELD (FINA	ANALYSIS MET	AND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MW-5	3	CG	40mL	HCL				BTEX	MTBE	APP	3.0
MW-5	1	AG	250mL	NaThio				P/	М	APP	3~
MW-5	1	AG	250mL	H2SO4				TR	PH	APP	200
MW-5	3	CG	40mL	HCL				VF	Ή	APP	Duo
MW-5	1	AG	1000mL	Ice				EF	Ή	APP	360
								1			
REMARKS	CHES-						- 1				
ORP = -0	68										
MATERIAL CO		AG = Amber (S = Silicone;	Glass; CG = T = Teflon;	Clear Glass; O = Other (Spe		gh Density Pol	yethylene; I	LDPE = Low Dens	sity Polyethyle	ene; PP = Po	lypropylene;
SAMPLING E	QUIPMENT			rough) Peristaltic		B = Bailer, SM = Straw Mo	BP = Bladde ethod (Tubing (= Electric Su O = Other (S	bmersible Pump specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE					Si					40.0	
NAME: CON							5 E Main	St, Immo	kalee, F		
WELL NO: M	W-6			SAMPLE IC					DATE:	7/8/21	
Lucii.		TUDING		Lucu	PURC SCREEN I	SING DA				1005 0140 7	
WELL DIAMETER (ir	nches): 4	TUBING DIAMET	τER (inches): 0	1		et to 11 feet	STATIC DI	EPTH R (feet): 🍫 🏂	/	URGE PUMP TY R BA!LER: PP	
WELL VOLUM (only fill out if a		1 WELL VOL	JME = (TOTAL	WELL DEPTH	- STATIC	DEPTH TO V	VATÉR) X WE	LL CAPACITY			
` `			= (- 100	- 34	feet) X			= 3-01	gallons
(only fill out if		RGE: 1 EQUI	PMENT VOL. = =	PUMP VOLUME gallons + (+ (TUBING	G CAPACITY gallons/foot 2		G LENGTH) + F	LOW CELL gallons		s
INITIAL PUMP		800	FINAL PUM	P OR TUBING	Can	PURGING	3	PURGING	41.5	TOTAL VOI	UME ,
DEPTH IN WE	LL (feet):		DEPTH IN V	T	810	INITIALE	DAT: (/.37	DISSOLVED	1/-0	PURGED (g	allons): 4.77
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (n3/ch	OXYGEN (circle units) mg/L or % saturation	TURBIC (NTU:		
11:56	3.25	3.25	-25	649	6.4	30.0	0.49	1. 29	6-7		repen
11:53	.25	4.00	. 25	6.49	64	30.0	0.49	1.20	5.80		
11:50	-25	4.75	.25	6.47	6.4	70.0	०५१	1.74	5.05		
			+	+ +					+	-	
			+	+ +		-			+		-
			1						1		
									1		
									1	•	
WELL CARA	CITY (Gallone	Per Footh: 0	75" = 0.02°	l" = 0.04; 1.2	5" = 0.06·	2" = 0.16:	3" = 0.37: 4"	'= 0.65; 5 " =	= 1.02; 6 "	' = 1.47; 12" :	= 5.88
TUBING INSI	DE DÍA, CAP	ACITY (Gal./F	t.): 1/8" = 0.00	06; 3/16" = 0.	0014; 1/	4" = 0.0026;	5/16" = 0.004;				= 0.016
PURGING EC	UIPMENT CO	DDES: B	Bailer; BP	= Bladder Pump		= Electric Sub	mersible Pump;	PP = Perist	altic Pump;	O = Other (Specify)
SAMPLED BY	(PRINT) / AF	FILIATION:	T	SAMPLER(S) SI			117	1		- 1000	
Derek Da	vie/MDM :	Sontions						SAMPLING INITIATED A	T: //· 🔿	SAMPLIN ENDED A	
PUMP OR TU		/		TUBING				FILTERED: Y	N		/ε !E: μm
DEPTH IN WE	, ,	} , 0		MATERIAL COL				n Equipment Ty			
FIELD DECO						Y <u>N</u> (replace	· · · · · · · · · · · · · · · · · · ·	DUPLICATE	: Y	<u>N</u>	
<u> </u>	E CONTAINE	ER SPECIFICA	TION		т -	ATION (includio	<u> </u>	INTENI ANALYSIS		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (r	nL) FINAL pH	METH		CODE	(mL per minute)
MW-6	3	CG	40mL	HCL				BTEX/N	TBE	APP	300
MW-6	1	AG	250mL	NaThio				PAI		APP) w
MW-6	1	AG	250mL	H2SO4				TRP		APP	े ००
MW-6	3	CG	40mL	HCL				VPI		APP	200
MW-6	1	AG	1000mL	Ice	_			EPI	1	APP	300
REMARKS:											
ORP = -	0 8 A										
MATERIAL C		AG = Amber G	Glass; CG = C	lear Glass; H	IDPE = Hig	h Density Poly	ethylene; LDI	PE = Low Densi	ty Polyethyle	ene; PP = Po	lypropylene;
		S = Silicone;		O = Other (Spec							
SAMPLING E	QUIPMENT (ough) Peristaltic f Flow Peristaltic F		B = Bailer; M = Straw Me	BP = Bladder P thod (Tubing Gra			bmersible Pump	:

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: COT	nbs Oil				SI		5 E N	⁄/ain	St, Immok	alee. F	 L	
WELL NO: M				SAMPLE ID					1		1/1/21	
The Security P. 1	Y			1		SING DA	ГА		V*************************************		77101	
WELL DIAMETER (in WELL VOLUM	nches): 2	TUBING DIAME: 1 WELL VOL	TER (inches): 0		1: 2 feet	NTERVAL to 12 feet	то		R (feet): 6-7-		IRGE PUMP TY R BAILER: PP	
(only fill out if	applicable)		= (et –	6-20	feet)	x		allons/foot	= -84	gallons
(only fill out if		NOC. TEQUI		gallons + (. + (100114)	gallons/foot			feet) +	gallons		s
INITIAL PUME DEPTH IN WE		8.5	FINAL PUMI DEPTH IN V	OR TUBING VELL (feet):	8-5	PURGING INITIATE	DAT: /	2:09	PURGING ENDED AT:	12/24	TOTAL VOL PURGED (g	UME allons): / 58
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (°C)	CON (circle u µmhos or mS	units) s/cm	OXYGEN (circle units) mg/L or % saturation	TURBID (NTUs) (describ	(describe)
12:18	-90	.90	110	6.81	6.5	30.2	0.4		0-81	18.4	r Clear	
12:21	- 30	1.20	.10	6.81	65	346	0.4	\rightarrow	0.79	12.91	, –	
12:24	-30	1.50	•(0	0.11	6.5	30.2	0.4	0	0.78	17.2		_
WELL CAPAC TUBING INSI	DE DIA. CAP.	ACITY (Gal./F	t.): 1/8" = 0.000	" = 0.04; 1.29 06; 3/16" = 0.0 = Bladder Pump	0014; 1/ ; ESP	2" = 0.16; 14" = 0.0026; 2 = Electric Sub	5/16" = mersible	= 0.004;	' = 0.65; 5" = 3/8" = 0.006; PP = Peristal	1/2" =	· · · · · · · · · · · · · · · · · · ·	= 5.88 = 0.016 Specify)
SAMPLED BY	` '			SAMPLER(S) SI				\supset	SAMPLING INITIATED AT	: 12/2	SAMPLIN ENDED A	-
PUMP OR TU DEPTH IN WE	BING	8.5	- I	TUBING MATERIAL COD	E HDDE	:			FILTERED: Y	N N	FILTER SIZ	E:μm
FIELD DECO		N: PUME				Y <u>N</u> (replac	ed)	THUALO	DUPLICATE:	Υ Υ	<u>N</u>	
SAMPL	E CONTAINE	ER SPECIFICA	TION	SAMPLE I	PRESERVA	ATION (includir		e)	INTEND			CAMPI E DUMP
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (n		FINAL pH	ANALYSIS A	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MW-7R	3	CG	40mL	HCL					BTEX/M1	TBE	APP	٥٥ر
MW-7R	1	AG	250mL	NaThio					PAH		APP	200
MW-7R	1	AG	250mL	H2SO4					TRPH		APP)sa
MW-7R	3	CG	40mL	HCL					VPH		APP	>ω
MW-7R	1	AG	1000mL	Ice	-		-		EPH		APP	300
REMARKS: ORP = ~ 4		AG = Amhar C	Glass; CG = C	loar Glass 11	DDE ~ U:-	h Danaity Date	athulane	1.65	E a Low Done?	Dohimathiri	BB - C	l
SAMPLING E		S = Silicone; CODES: A	T = Teflon; (PP = After (Thro	near Glass; — n O = Other (Specingh) Peristaltic F Flow Peristaltic P	fy) Pump;	h Density Poly B = Bailer; M = Straw Met	BP = BI	adder P			mersible Pump	ypropylene;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

² STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: COT	nhe Oil				SI		05 E Main	. Ct. Imama			
WELL NO: N				SAMPLE ID			13 E IVIAII	n St, Immo	DATE:	-	
WELL NO: IV	144-0			SAMPLE ID		SING DA	TA		DATE.	7/8/21	
WELL DIAMETER (ii	nches): 4	TUBINO DIAME:	TER (inches): 0).25 DEPTH	SCREEN II	NTERVAL et to 11 feet	STATIC TO WAT	ER (feet):) ا در	PURGE PUMP TO	
(only fill out if		1 WELL VOL		WELL DEPTH		: DEPTH TO V <i>し、}</i> シ				305	
EQUIPMENT	VOLUME PU	RGE: 1 EQUI	= (PMENT VOL. =	11 fe PUMP VOLUME	et –		feet) X	0.65 ING LENGTH) +	gallons/foot	_	gallons
(only fill out if	applicable)		=	gailons + ((100,110	gallons/foot		feet) +	galions		s
INITIAL PUMP DEPTH IN WE		8.0	FINAL PUM DEPTH IN V	IP OR TUBING WELL (feet):	ن ج	PURGING INITIATE	3 DAT: /0.35	PURGING ENDED AT	10.54	TOTAL VOI PURGED (UME pallons): 4.75
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or ms/cm	DISSOLVED OXYGEN (circle units) of or % saturation	TURBI (NTU		
10:48	7-75	3.25	125	6.44	6.3	29.6	७ .५५	1.45	7.6,	y Clar	ar work
18:51	.75	4,00	. 25	6.49	6.3	796	6-45	1.42	7.1		_
10:54	.75	4.75	.25	6.44	6.3	79.4	0.45	1.41	G 194	<i>s</i> –	_
	DE DÍA. CAP	ACITY (Gal./Fi	i.): 1/8" = 0.00	1" = 0.04; 1.25 106; 3/16" = 0.0 P = Bladder Pump	0014; 1 /	4" = 0.0026;	3" = 0.37; 5/16" = 0.004 mersible Pump	4; 3/8" = 0.00		0.010; 5/8"	= 5.88 = 0.016 Specify)
						LING DA	TA				
SAMPLED 81 Derek Da	,			SAMPLER(S) SI	GNATURE	(S):		SAMPLING INITIATED	AT: /025	SAMPLIN ENDED A	G iT: //! 00
PUMP OR TU DEPTH IN WI	BING	F. 0		TUBING MATERIAL COD	r. UDDE			D-FILTERED: Y		FILTER SIZ	
FIELD DECO			Y <u>N</u>			Y N (repla		DUPLICATE		<u>N</u>	
SAMPI	E CONTAINS	ER SPECIFICA				ATION (includii	· · · · · · · · · · · · · · · · · · ·				
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATIVI USED	Ε -	TOTAL VOL	FINAL	ANALYSIS METH	AND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MW-8	3	CG	40mL	HCL				BTEX/	MTBE	APP	300
MW-8	1	AG	250mL	NaThio				PA	Н	APP	700
MW-8	1	AG	250mL	H2SO4				TRE	ч	APP	⊃ ∞
MW-8	3	CG	40mL	HCL				VP	Н	APP	20.
MW-8	1	AG	1000mL	Ice				EP	Н	APP	7 61
REMARKS: ORP = TO MATERIAL C		AG = Amber G	slass; CG = C	Clear Glass: H	DPE = High	n Density Poly	ethylene: I I	OPE = Low Dens	ity Pojvethyl	ene: PP = Po	ypropylene;
SAMPLING E		S = Silicone;	T = Teflon;	O = Other (Speci-	fy) 'ump:	B = Bailer.	BP = Bladder	Pump: ESP		ubmersible Pump	
				Flow Peristaltic P	ump; S	M = Straw Me	thod (Tubing Gr	avity Drain)	O = Other (,

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

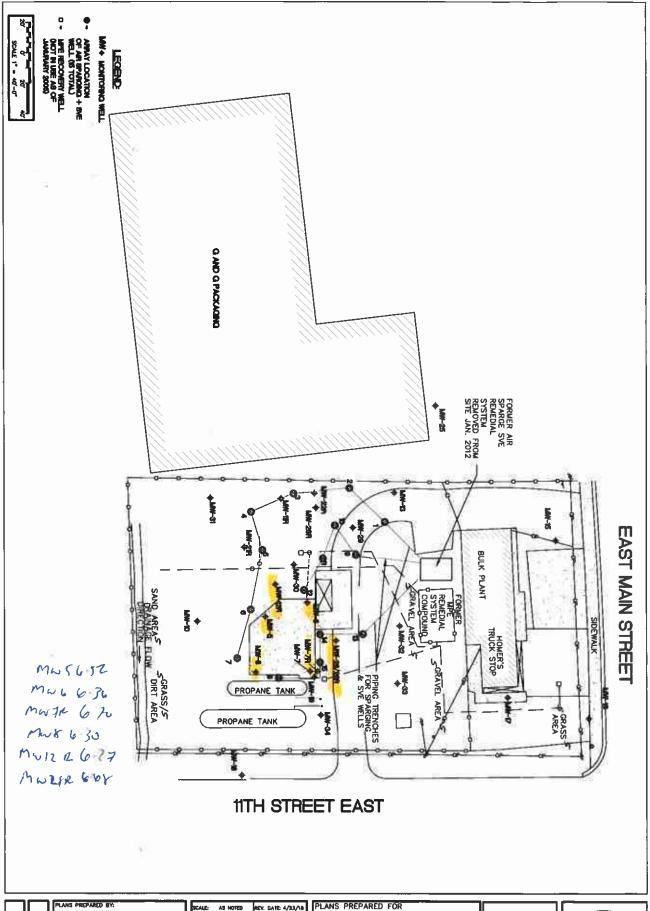
SITE	. 01			<u> </u>		TE		0. 1			
NAME: COI			.				25 E Main	St, Immo			_
WELL NO: N	1VV-12R	····-		SAMPLE	D: MW-1				DATE:	7/8/21	
WELL		TUBING	2	1A/EI	PURC L SCREEN I	SING DA	STATIC DE	DTU	Lou	JRGE PUMP T	/DE
DIAMETER (i	nches): 2	DIAME	TER (inches): 0).25 DEP	TH: 2 feet	to 12 feet	TO WATER	R (feet): 6 · 2	Z OF	RBAILER: PP	
WELL VOLUE (only fill out if	ME PURGE: applicable)	1 WELL VOL	UME = (TOTAI	L WELL DEPTH			VATÉR) X WE	LL CAPACITY			
. ,			= (1001	0.27	feet) X			= 3.72	gallons
(only fill out if		RGE: 1 EQUI	PMENT VQL. = =	PUMP VOLUM	IE + (TUBING	G CAPACITY gallons/foot		G LENGTH) + F	LOW CELL v gallons :		s
INITIAL PUM DEPTH IN W	P OR TUBING ELL (feet):	8.0		IP OR TUBING WELL (feet):	8.0	PURGIN	G DAT: / 2:36	PURGING ENDED AT:		TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or res/cm	DISSOLVED OXYGEN (circle units) or saturation	TURBID (NTUs		
12:53	3.75	3.75	, 25	6.40	6.5	28.1	0.41	0.84	4.60	· CLA	~ ~~~~
17:06	-75	4.50	- 2.5	6.40	65	28-1	0,41	0.83	4.01		
12:59	·H	5.20	.25	6.40	4.5	2r.1	0.41	0.81	3.15		***
					-			-			
			+	1			-				
			.75" = 0.02; t.): 1/8" = 0.00	1" = 0.04; 1.:		2" = 0.16; 4" = 0.0026;	3" = 0.37; 4" 5/16" = 0.004;	2 = 0.65; 5" = 3/8" = 0.006			= 5.88 = 0.016
	QUIPMENT C		•	= Bladder Pum			mersible Pump;	PP = Perist		O = Other (
OALADI ED D	CODING (A)	TEN LATION		044451 50101		LING DA	TA	3			
	Y (PRINT) / AI IVİS/MDM			SAMPLER(S)	SIGNATURE	(S):		SAMPLING -INITIATED A	iT: // / / y=c	SAMPLIN ENDED A	G T: سوی ترحر/
PUMP OR TI	JBING		+	TUBING			FIELD-	FILTERED: Y			μm
DEPTH IN W	ELL (feet): INTAMINATIO	A U		MATERIAL CO				n Equipment Ty	•		
		N: PUMF			TUBING '		· · · · · · · · · · · · · · · · · · ·	DUPLICATE	: Y	<u>N</u>	
SAMPLE ID CODE	# CONTAIN	MATERIAL CODE	VOLUME	PRESERVATI USED	VE .	ATION (includi TOTAL VOL ED IN FIELD (r	FINAL	INTENE ANALYSIS	AND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MW-12R	ERS 3	CG	40mL	HCL	1,100.		ne) pri	BTEX/N	ITBE	APP	710
MW-12R	1	AG	250mL	NaThio				PAH		APP) as
MW-12R	1	AG	250mL	H2SO4				TRP	Н	APP	دەر
MW-12R	3	CG	40mL	HCL			<u> </u>	VPI	1	APP	700
MW-12R	1	AG	1000mL	Ice				EPI	+	APP	>av
REMARKS:	1		J								
ORP = ~ (_										
MATERIAL (AG = Amber 6 S = Silicone;	Glass; CG = (T = Teflon;	Clear Glass; O = Other (Spe	-	h Density Poly	ethylene; LDF	E = Low Densit	y Polyethyler	ne; PP = Po	ypropylene;
SAMPLING	EQUIPMENT (ough) Peristaltic Flow Peristaltic	Pump; Pump; S	B = Bailer, M = Straw Me	BP = Bladder Pethod (Tubing Grav	ump; ESP =	Electric Sub	mersible Pump pecify)	-

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE					sin	ΓE		2000			<u> </u>
NAME: Con	nbs Oil				LO	CATION: 52	25 E Main	St, Immo	kalee, l	FL	
WELL NO: M	W-28R			SAMPLE	ID: MW-2	28R			DATE:	7/4/21	
	1,085	0.0			PURG	ING DA	TA	9:			<u></u>
WELL		TUBING			L SCREEN II		STATIC D	EPTH R (feet): 6 (_ P	URGE PUMP TY	
DIAMETER (in WELL VOLUM	iches): ∠ NE PURGE:	1 WELL VOL	TER (inches): UME = (TOTA	U.ZO DEP	TH: 2 feet	to I∠ feet DEPTH TO V	VATER) X WE	ELL CAPACITY	0	R BAILER: PP	
(only fill out if a	applicable)		= (6.68				= . 45	
		RGE: 1 EQUI		= PUMP VOLUN				G LENGTH) + F			gallons
(only fill out if a	applicable)		=	gallons + (gallons/foot	х	feet) +	gallons	= gallon	s
INITIAL PUMP DEPTH IN WE		8.5		MP OR TUBING WELL (feet):	8.5	PURGING	G DAT: /3//3	PURGING ENDED AT:	(3:2)	TOTAL VOI	UME pallons): /-56
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or ms/cm	DISSOLVED OXYGEN (circle units) offo/b or % saturation	TURBIC (NTU	OITY COLO	R ODOR
13:22	.90	.90	13	6.78	4.3	29.2	0.24	0.53	5. 2	Cum	- Nin
13:25	-30	1-20	-/0	6.78	6-3	29. 2	0.24	0.52	4.60		
13:21	- 30	1-50	./0	6.28	6.3	29.2	0.24	0.56	3.78		
			+	+					+		
			 	+							
									1		
									1		
					,						
WELL CARAC	TTV (Callone	Per Footh: 1	76" = 0.02:	1" = 0.04; 1.	35" - 0.06·	2" = 0.16;	3" = 0.37; 4'	" = 0.65; 5 " =	100 68	= 1.47; 12":	- 5.00
				006; 3/16" =		4" = 0.0026;	5/16" = 0.004;				= 5.88 = <u>0.</u> 016
PURGING EQ	UIPMENT CO	DDES: B	Bailer; 8	P = Bladder Pun			mersible Pump;	PP = Perist	altic Pump;	O = Other (Specify)
SAMPLED BY	(PRINT) / AF	FILIATION:		SAMPLER(S)		LING DA	IA	<u> </u>			
Dorok Do	dio (NAIDNA :	Candaan			_	15		SAMPLING INITIATED A	T: 170	SAMPLIN SE ENDED A	IG IT: /3: 34
Derek Dav		Services		TUBING			FIELD-	 FILTERED: Y			γΣ- υ γ μm
DEPTH IN WE				MATERIAL CO			Filtratio	n Equipment Ty	pe:		
FIELD DECON					TUBING 1		<u> </u>	DUPLICATE	: Y	<u>N</u>	
-	E CONTAINE	R SPECIFICA	ATION			TION (including	<u> </u>	INTENI ANALYSIS		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATI USED		FOTAL VOL ED IN FIELD (r	nL) FINAL pH	METH		CODE	(mL per minute)
MW-28R	3	CG	40mL	HCL				BTEX/N	ITBE	APP	300
MW-28R	1	AG	250mL	NaThio				PAI	1	APP	200
MW-28R	1	AG	250mL	H2SO4				TRP		APP) 0-
MW-28R	3	CG	40mL	HCL				VPI		APP	Des
MW-28R	1	AG	1000mL	Ice				EPI	1	APP	ブ心
REMARKS:	L			<u></u>				1			
	ORP = ~97(
MATERIAL C		AG = Amber G	Glass; CG =	Clear Glass;	HDPE = High	n Density Poly	ethylene: LDF	PE = Low Densi	y Polvethyle	ne: PP = Pol	lypropylene;
		S = Silicone;	-	O = Other (Spe					.,,,		,, p. op, 10110,
SAMPLING E	QUIPMENT			rough) Peristaltic Flow Peristaltic		B = Bailer; M = Straw Mei	BP = Bladder P thod (Tubing Grav		= Electric Su O = Other (S	bmersible Pump pecify)	;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.


^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) YSI 550/Sper TU-2016/Hanna INSTRUMENT # 3/3/3 PARAMETER: ☐ TEMPERATURE □ CONDUCTIVITY SALINITY ⊠ pH ORP **☑** TURBIDITY RESIDUAL CI ⊠ DO OTHER STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards the standard values and the date the standards were prepared or purchased] Standard A turbidity-100 exp conductivity-1 413 exp pH-7.00 exp DO-100%-DI water Standard B turbidity-10 0 exp conductivity-447 exp pH-4 00 exp

DATE (mm/dd/yy)	TIME (hr:min)	STD A B C	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES NO)	TYPE (INIT CONT)	SAMPLER INITIALS
Flory	10105	SIB	turbidity	100/100	6/8	4	(3411 0011)	TIM INCO
7/8/21	06.70	A/B)	(413/442) Canduct	1412/447	0/0	4		0
7/8/4	10:25	(13)	PH O	2.0/4.0	6/0	4		0
48/21	(0.30	A	100% DO	(00	0	ĭ		0
man district								1
								-
7/8/h1	12:46	AIB"	tu bid ty	100/10-0	0/0	U		0
7/1/21	F3141	NB .	Conduct	1 413/447	0/0	Y		0
7/4/21	13150	AB	(D)(4)	70/40	0/0	4		0
7/2k1	13:55	Α	100° DO	100	6	4		0
- The second sec								
		-						

Location 525 E Main St Irrockales Date 7/8/21 20415 Project / Client Certos 0.1 FAC 116839176 7:00 Deret Dans. fell Lokeland MAM office. in Mons N.SSM NV Zeo van En lark to 5. k. Slovale. Tipe-Sarple (6) Mis weather NAM Suny 10:00 - Arrive on site Took wit Loude Mas 6.52 MW 6 634 MW 76 670 MW 8 630 MW 128 622 MW 28d GOV 10.15 - Charted CAI of meters see colly 10:35 - Began Purying Man & see sample les 1054- Sangled mus 11:07 Begin Rogery in 5 see sample by 11.25 - Sample Mus -(1:37 - Began forgry truck see sample by 11:56 - Salphel comis 12:09- Ryon loging MWIR see make by 12:24 - soupled mw71-12:38 - Bryon loging Mulle see sample by 1259 - Single on 122 (3:13 - Begin Righty Min 288 see sample by 13.28 - samples MWZ872 -13: 40- checked cal of mens see tally 19.05 will samples packed on ite off sike En Kevik to Linkeland NON affire. >100 mays

MDM JOB NO 20815

SCALE: AS NOTED	REV. DATE: 4/23/18
DRAWN 617: DDB	PROPOSED GRANCS BY:
CHECKED BY:	S.S.#
APPROVED BY	1 I

PLANS PREPARED FOR	
COMBS OIL BULK PLANT	
525 AND 527 E. MAIN ST. MAJOKALEE, FLORIDA	

SITE PLAN WITH MONITORING WELL LOCATIONS

1055 Kathleen Road, Lakeland, FL 33805. Tel (863)646-9130 Fax (863)648-1106 www.mdmservices.com

July 10, 2017

Mr. Josh Tarver, Project Manager Florida Department of Environmental Protection Petroleum Restoration Program 2600 Blair Stone Rd Tallahassee, Florida 32399-2400

Re: Post Active Remediation Monitoring Report (Annual) – Task 5

Combs Oil Bulk Plant 525 East Main Street Immokalee (Collier County), Florida FDEP Facility #118839176 FDEP P.O. #ADDECB

Dear Mr. Tarver,

This correspondence and accompanying appendices serves as the Annual Post Active Remediation Monitoring (PARM) Report for the above referenced site, performed in accordance with FDEP Purchase Order No. ADDECB, Task 5. The appendices are compiled as follows:

Appendix A

Figure 1: Constituent Concentrations in the Groundwater

Figure 2: Water Table Elevation (June 2017)

Appendix B

Table 1a Groundwater Monitoring Well Analytical Summary – VOCs & Metals

Table 1b Groundwater Monitoring Well Analytical Summary – PAHs &

TRPHs

Table 1c Groundwater Monitoring Well Analytical Summary – Natural

Attenuation (NA) Parameters

Table 2 Groundwater Elevation Summary

Time vs. Concentration Plots (MWs 5, 6, 7, 8 & 28)

Appendix C

Laboratory Analytical Results, Chain of Custody, Groundwater Sampling Logs, Equipment Calibration Record, Field Notes (June 2017 sampling event)

Site conditions as determined from the semi-annual groundwater sampling events of designated monitoring wells as conducted from December 2015 through June 2017 are discussed in the following Sections.

Groundwater Sampling

In accordance with Tasks 2 through 5, respectively, of FDEP Purchase Order No. ADDECB, on December 23, 2015, June 16, 2016, December 21, 2016, and June 19, 2017, groundwater samples were obtained from the following monitoring wells for the laboratory analyses indicated:

MW5 (BTEX/MTBE) MW6 (TRPH) MW7 (TRPH) MW8 (BTEX/ MTBE) MW28 (TRPH)

The laboratory analytical results and other pertinent data for the 2015/2016 sampling events were provided in previous technical Reports. The laboratory analytical results, groundwater sampling logs, equipment calibration records, and field notes for the June 19, 2017 sampling event are compiled in Appendix C. The analytical results are summarized in Tables 1a and 1b (Appendix B), which include historical data. Figure 1 (Appendix A) depicts the laboratory analytical results for these latest 4 consecutive semi-annual groundwater sampling events at the respective well locations. Groundwater samples from the following wells contained constituents exceeding the respective cleanup target levels (CTLs):

Sar	nple	TRPHs	Benzene
Location	Date	(µg/L)	(µg/L)
MW-5	12/23/15		7.0
	6/19/17		5.7
MW-7	12/23/15	16,000	
	6/16/16	16,000	
	12/21/16	7,900	
	6/19/17	24,000	
MW-8	12/23/15		4.6
MW-28	12/23/15	12,000	
	6/16/16	9,000	
	12/21/16	14,000	
GC	TLs	5,000	1
NAI	OCs	50,000	100

The above listed constituent concentrations are below the respective Natural Attenuation Default Concentrations (NADC) for benzene (NADC is 100 ug/L) and TRPH (NADC is 50,000 ug/L).

Time vs. Concentration plots from the laboratory analytical data from monitoring wells (MWs) 5 (benzene), 6 (TRPH), 7 (TRPH), 8 (benzene), and 28 (TRPH) from November 2011 to the present are also compiled in Appendix B. With the exception of the anomalously high concentration of benzene as detected in the MW5 groundwater samples obtained in May 2015, an overall declining trend in benzene is indicated from the MW5 and MW8 groundwater samples. Although benzene was detected at a concentration of 5.7 ug/L (exceeding the CTL of 1 ug/L) in the latest groundwater samples obtained on June 19, 2017, there is an overall downward trend of benzene in the MW5 groundwater samples. Regarding TRPH concentrations from the sampling of MWs 6, 7, and 28, a specific declining trend in concentrations over time is not indicated in the MW7 and MW28 groundwater samples. TRPH concentrations in the MW6 groundwater samples for the last 4 consecutive semi-annual sampling events are below the CTL of 5,000 ug/L.

Water Table Elevation

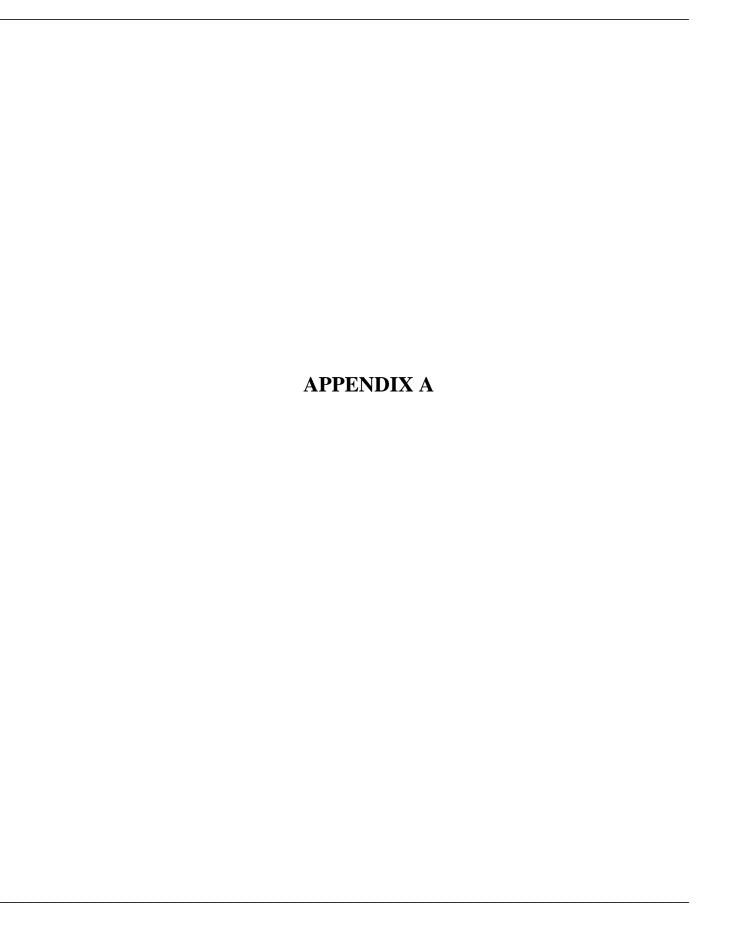
Water table measurements and associated elevations as obtained during the sampling of the various monitoring wells discussed above are compiled in Table 2 (Appendix B), which includes historical data. Figures 2 (Appendix A) depicts the water table elevations as determined from water table measurements obtained on June 19, 2017 in association with groundwater sampling. As indicated from this elevation data, surficial aquifer groundwater flow is predominantly to the east, which is generally in accordance with previous determinations of groundwater flow. It is noted the water table elevation of MW28 (96.27 ft.) is anomalously low for unknown reasons and is not honored in the contouring of Figure 2.

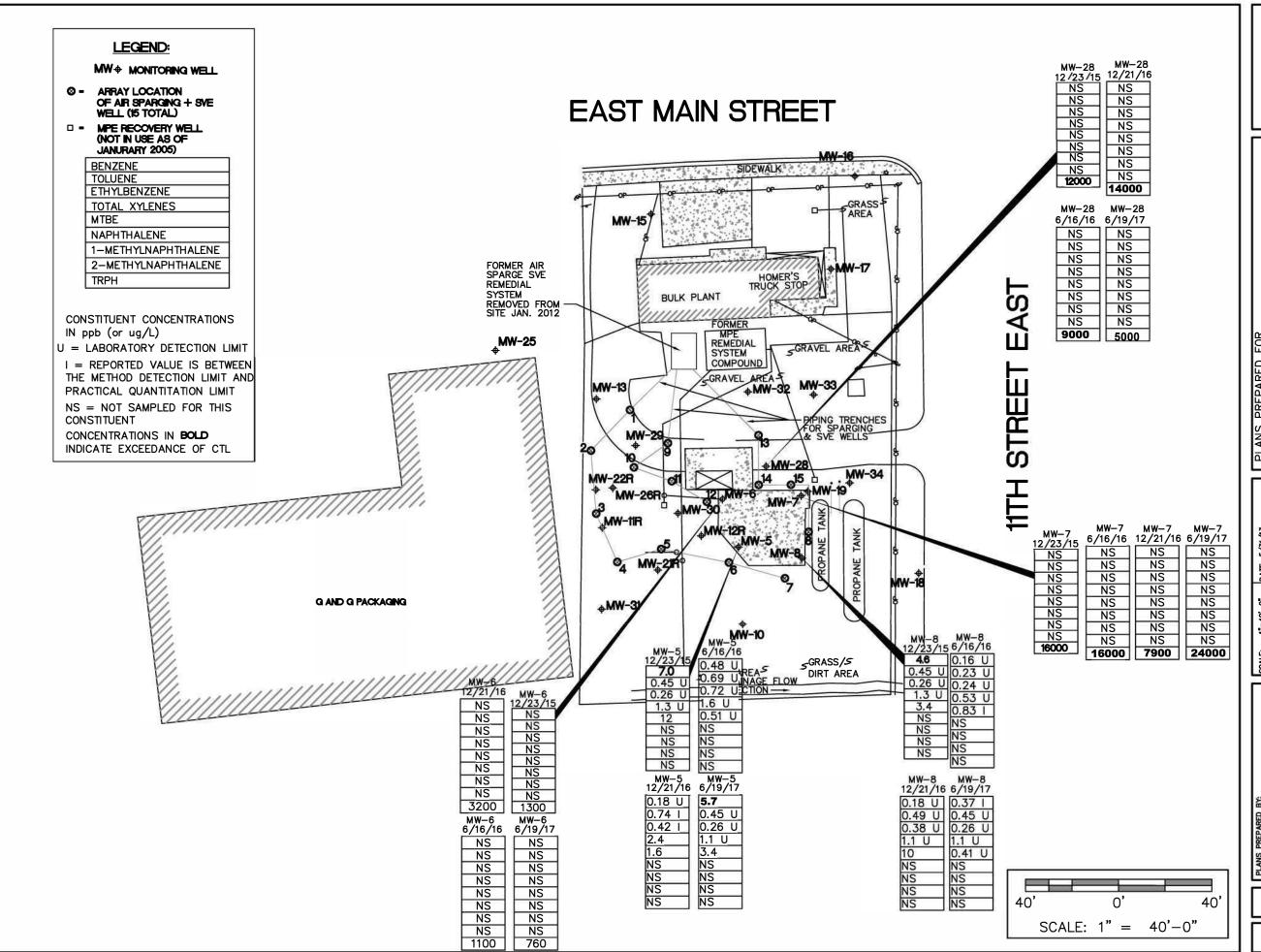
Summary & Conclusion

Based on these most recent semi-annual groundwater sampling events of designated monitoring wells as conducted since December 2015, benzene and/or TRPH were detected in groundwater samples obtained from monitoring wells (MWs) 5, 7, and 28 at concentrations above respective CTLs, but significantly below NADCs. Natural Attenuation parameter sampling, although limited, as conducted in November 2014 (see Table 1c, Appendix B) generally indicates groundwater conditions favorable to anaerobic degradation of petroleum constituents. While natural attenuation of benzene is generally apparent, the natural attenuation of TRPH is not occurring, based on review of the groundwater analytical data obtained from monitoring wells MW7 and MW28 since 2010. To evaluate the possibility that petroleum constituents are adhering to the PVC materials of the monitoring wells,

consideration should be given to replacing monitoring wells MW7 and MW28 (at a minimum) before continuing PARM/NAM. If TRPH concentrations persist in the groundwater samples from these wells following well replacement, limited supplemental remedial action, such as oxidizer and/or bio-remedial injections in the immediate vicinity of the active USTs, should be considered in order to achieve substantial reduction in the concentration of TRPH.

Should you require additional information during review of this Report, please contact me at 863-646-9130 ext. 104, or via email to jeff.morgan@mdmservices.com.


Professional Certification:

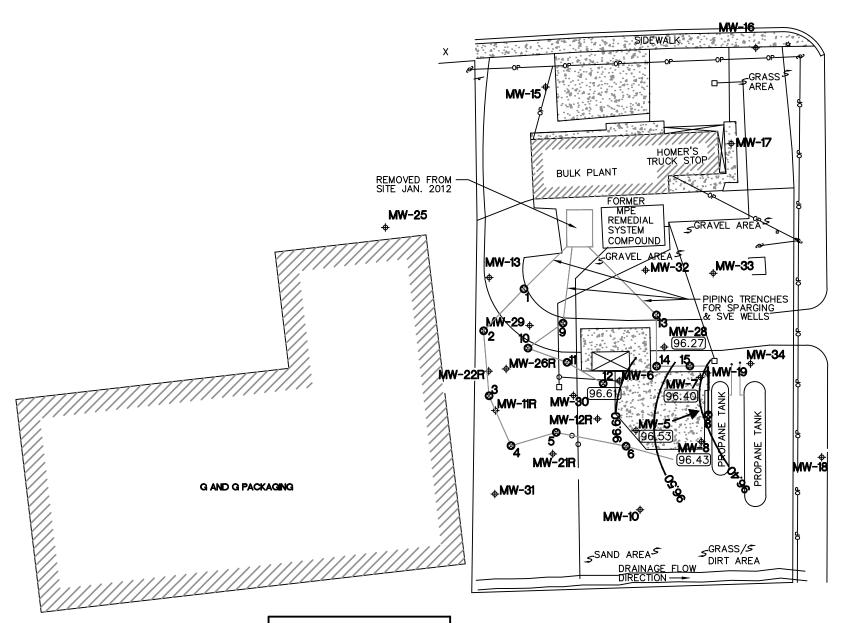

TOPIDA AL GEOLOGISTINIAN AL GE

Charles J. Morgan, P. G. #1233

7/10/17

Date

OIL BULK PLANT
'E. MAIN ST.
'LORIDA 占 COMBS 525 AND 527 IMMOKALEE, FL


CONSTITUENT CONCENTRATIONS IN GROUNDWATER

MDM JOB NO. 20815

FIGURE NO.

EAST MAIN STREET

11TH STREET EAST

ELEVATION

WATER TABLE JUNE 2017

DRAWN BY: PD CHECKED BY: S.S.# APPROVED BY: Do Not Scale—Use Dimensions Only To the best of my knowledge, the plans and specifications authritted hisswith comply with safeting interpretedions and		
CHECKED BY: APPROVED BY: Do Not Scale-Use Dimensions Only To the best of my knowledge, the plans and spellicutions automitted heavills comply with salaring interpretations and	-	PROPOSED GRADES BY:
APPROVED BY: Do Not Scale—Use Dimensions Only To the best of my knowledge, the plans and specifications submitted neawith comply with safeting interpretations and		8.S.#
Do Not Scale—Use Dimensions Only "To the best of my knowledge, the plans and specifications submitted herewith compty with existing interpretations and	APPROVED BY:	
" To the best of my knowledge, the plans and specifications submitted herewith comply with existing interpretations and	Do Not Scale-Use	Dimensions Only
	" To the best of my knowledge submitted herewith comply with	je, the plans and specifications

MDM JOB NO. 20815

FIGURE NO. 2

LEGEND:

MW + MONITORING WELL

8 - ARRAY LOCATION OF AIR SPARGING + SVE WELL (15 TOTAL)

MPE RECOVERY WELL (NOT IN USE AS OF JANURARY 2005)

96.27 WATER TABLE ELEV. (FT.)

→

40' 0' 40' SCALE: 1" = 40'-0"

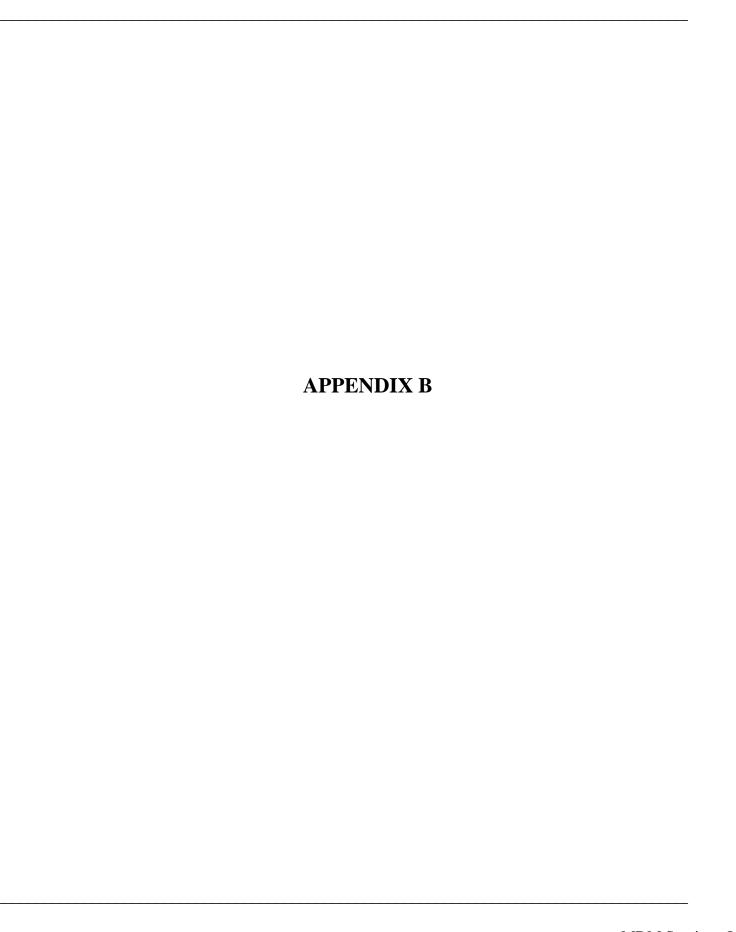


TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

r donney ib				•									
Sar	mple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
MW-2	2/9/99	15.00	1 U	80.00	3 U	95.00	3.0 U	NS	NS	NS	NS	NS	NS
MW-4	2/9/99	212.00	10.0 U	64.00	30.0 U	276.00	30.0 U	NS	NS	NS	NS	NS	NS
MW-5	2/9/99	133.00	5.0 U	5.0 U	15.0 U	133.00	15.O U	NS	NS	NS	NS	NS	NS
	6/16/03	390.00	55.00	50 U	57	502.00	120	NS	NS	NS	NS	NS	NS
	11/8/11	77.90	0.70	1.24	5.09	84.93	8.78	NS	NS	NS	NS	NS	NS
	1/3/12	0.56	0.48 U	0.45 U	0.94 I	1.50	1.8	NS	NS	NS	NS	NS	NS
	4/3/12	47.90	2.43	0.48 I	1.89	52.22	4.69	NS	NS	NS	NS	NS	NS
	8/20/12	19.50	0.140 U	0.190 U	6.16	25.66	26.5	NS	NS	NS	NS	NS	NS
	11/26/12	0.42 I	0.48 U	0.45 U	0.87 U	0.42	0.75 I	NS	NS	NS	NS	NS	NS
	2/25/13	16.50	0.48 U	0.75	0.87 U	17.25	2.04	NS	NS	NS	NS	NS	NS
	5/23/13	5.00	0.52	0.45 U	0.87 U	5.52	5.18	NS	NS	NS	NS	NS	NS
	11/20/13	2.63	0.48 U	0.45 U	0.87 U	2.63	0.67 U	NS	NS	NS	NS	NS	NS
	6/10/14	11.70	0.48 U	0.45 U	2.07	13.77	3.56	NS	NS	NS	NS	NS	NS
	11/19/14	1.20	0.140 U	0.190 U	0.200 U	1.20	1.25 I	NS	NS	NS	NS	NS	NS
	5/19/15	51.7	4.24	0.45	1.65	58.04	1.62	NS	NS	NS	NS	NS	NS
	12/23/15	7.0	0.45 U	0.26 U	1.3 U	7.0	12	NS	NS	NS	NS	NS	NS
	6/16/16	0.48 U	0.69 U	0.72 U	1.6 U	0 U	0.51 U	NS	NS	NS	NS	NS	NS
	12/21/16	0.18 U	0.74 I	0.42 I	2.4	3.56	1.6	NS	NS	NS	NS	NS	NS
	6/19/17	5.7	0.45 U	0.26 U	1.1 U	5.70	3.4	NS	NS	NS	NS	NS	NS
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
	6/16/03	34	48.00	92	280	454	320	NS	NS	NS	NS	NS	NS
	11/7/03	87	46.00	52	93	278	12	NS	NS	NS	NS	NS	NS
	2/18/04	20	31.00	36	230	317	5.3	NS	NS	NS	NS	NS	NS
	5/18/04	500	250.00	230	1100	2,080	110	NS	NS	NS	NS	NS	NS
	8/26/04	1.70	1.00	1 U	2.3	5.00	5.4	NS	NS	NS	NS	NS	NS
	9/28/05	IU	1 U	1 U	2 U	1 U	4	NS	NS	NS	NS	NS	NS
	10/21/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05 3/29/06	1 U	1 U	1 U	2 U 2 U	1 U	12 10	NS	NS	NS	NS	NS	NS
		1 U	1 U			1 U		NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U		1 U	NS NS	NS	NS	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS	NS	NS NS	NS	NS
	1/11/08	1 U	10	1 U	1 U	1 U	3.06		NS NS	NS	NS NS	NS NS	NS
-	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS NS	NS NS	NS NS		NS NS
	7/17/08	10	10	1 U	1 U	1 U	1 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
-		1 U	1 U			1 U		NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/3/09 5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
		0.29	0.1601 U			0.1601 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	8/5/09 10/28/09	0.29 0.36 U	0.1601 U	0.1959 U	0.2310 U 0.82 U	0.1601 U	0.2562 U 0.67 U	NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/23/10	0.36 U	0.46 U	0.45 U NS	0.82 U NS	0.36 U	0.67 U NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
by others	9/10/10	3.04	0.730 I	0.520 U	0.980 U	3.77	9.93	NS	NS NS	NS NS	NS NS	NS NS	NS NS
by others	11/5/10	2.97	0.7301 0.48 U	0.520 U	0.980 U	2.97	8.02	NS	NS NS	NS NS	NS	NS NS	NS NS
	11/5/10	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS NS	NS NS	NS	NS NS	NS NS
	1/3/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS NS	NS NS	NS	NS	NS NS
	4/3/12	0.49 I	1.41	0.45 U	1.30 I	3.20	0.67 U	NS	NS NS	NS NS	NS	NS NS	NS NS
	2/25/13	0.49 I NS	NS	0.45 U NS	1.30 I NS	3.20 NS	0.67 U NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS
	5/23/13	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS
	11/20/13	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS
	6/10/14	NS	NS	NS NS	NS NS	NS	NS NS	NS	NS	NS	NS	NS	NS NS
	6/10/14	БИ	INO	IND	МЭ	INO	CNI	CNI	ON	CNI	CNI	INO.	GNI

TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
	6/16/03	360	50 U	50 U	50 U	360.0	1200	NS	NS	NS	NS	NS	NS
	11/7/03	210	1.4	1.7	1 U	213.1	11	NS	NS	NS	NS	NS	NS
	2/18/04	140	1 U	2.5	3.3	145.8	30	NS	NS	NS	NS	NS	NS
	5/18/04	160	1.4	2	3	166.4	42	NS	NS	NS	NS	NS	NS
	8/26/04	14	1 U	1.7	1.3	17.0	5 U	NS	NS	NS	NS	NS	NS
	9/27/05	17	1 U	1 U	2 U	17.00	2	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1U	5 U	NS	NS	NS	NS	NS	NS
	3/29/06	11	1 U	1.2	2 U	12.2	4.8	NS	NS	NS	NS	NS	NS
	9/29/06	1.1	1 U	1 U	1 U	1.10	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1.6	1 U	1 U	1 U	1.6	1 U	NS	NS	NS	NS	NS	NS
	8/10/07	1.15	1 U	1 U	1 U	1.15	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1.2	1 U	1 U	1.62	2.82	1 U	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.77	0.35	0.1959 U	0.2310 U	1.1200	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.400 I	0.470 U	0.520 U	0.980 U	0.400 I	0.720 I	NS	NS	NS	NS	NS	NS
	11/8/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

Sam	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	2/9/99	147.0	5.0 U	5.0 U	15.0 U	147.0	15.0 U	NS	NS	NS	NS	NS	NS
	3/14/02	1 U	1 U	1 U	1 U	1 U	6.9	NS	NS	NS	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	3	NS	NS	NS	NS	NS	NS
	6/16/03	1 U	1.1	1 U	1 U	1.1	1 U	NS	NS	NS	NS	NS	NS
	11/7/03	360	100 U	100 U	100 U	360	1600	NS	NS	NS	NS	NS	NS
	5/18/04	400	6.6	1.4	1.2	409.2	37	NS	NS	NS	NS	NS	NS
	8/26/04	2.8	1 U	1 U	1 U	2.8	5.1	NS	NS	NS	NS	NS	NS
	9/28/05	28	2.4	1 U	2 U	30.4	15	NS	NS	NS	NS	NS	NS
	12/28/05	31	1 U	1 U	2 U	31	12	NS	NS	NS	NS	NS	NS
	3/29/06	24	1 U	1 U	2 U	24	4.6	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/10/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	6.82	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	14.5	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	46.7	NS	NS	NS	NS	NS	NS
	1/21/2010	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	41.5	NS	NS	NS	NS	NS	NS
	2/23/10	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	1.82	NS	NS	NS	NS	NS	NS
	6/23/10	NS	0.48 G	0.43 0 NS	0.82 0 NS	NS	0.85 I	NS	NS	NS	NS	NS	NS
by others	9/10/10	13.4	0.470 U	0.520 U	0.980 U	13	4.11	NS	NS NS	NS NS	NS	NS	NS
by others	11/5/10		0.470 U	0.45 U	0.960 U	12	7.9	NS	NS NS	NS NS	NS	NS	NS NS
	11/5/10	12.4 0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS NS	NS	NS	NS	NS
						0.36 U	0.67 U	NS	NS NS	NS NS	NS	NS NS	NS
	1/3/12	0.36 U	0.48 U	0.45 U	0.87 U	15.03		NS	NS NS	NS NS	NS	NS	NS
	4/3/12	13.6	1.43	0.45 U	0.87 U	1.07	1.7	NS			NS		
	8/20/12	0.160 U	0.140 U	0.190 U	1.07	8.84	0.180 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	11/26/12	7.22	1.62	0.45 I	1.12	1.67	0.67 U	NS NS			NS NS		
	2/25/13	1.67	0.48 U	0.45 U	0.87 U	0.76	0.67 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	5/23/13	0.76	0.48 U	0.45 U	0.87 U	4.89	0.67 U				-		_
	11/20/13	4.89	0.48 U	0.45 U	0.87 U		0.85 I	NS	NS	NS	NS NS	NS	NS
	6/10/14	3.4	0.48 U	0.45 U	1.01	3.4	2.48	NS	NS	NS		NS	NS
	11/19/14	0.160 U	0.140 U	0.190 U	0.200 U	0.140 U	0.180 U	NS	NS	NS	NS	NS	NS
	5/19/15	0.44 U	0.48 U	0.45 U	1.65 U	3.25 U	0.67 U	NS	NS	NS	NS	NS	NS
	12/23/15	4.6	0.45 U	0.26 U	1.3 U	4.6	3.4	NS	NS	NS 	NS	NS	NS
	6/16/16	0.16 U	0.23 U	0.24 U	0.53 U	0 U	0.83 I	NS	NS	NS 	NS	NS	NS
	12/21/16	0.18 U	0.49 U	0.38 U	1.1 U	0 U	10	NS	NS	NS	NS	NS	NS
	6/19/17	0.37 I	0.45 U	0.26 U	1.1 U	0.37	0.41 U	NS	NS	NS	NS	NS	NS
MW-10	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
	6/16/03	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS

TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11R	6/16/03	140	17	2.4	58	217.4	18	NS	NS	NS	NS	NS	NS
	11/6/03	14	3.9	1 U	7.9	25.8	5 U	NS	NS	NS	NS	NS	NS
	2/18/04						no sa	mple					
	5/18/04	1 U	1 U	1 U	1 U	1 U	110	NS	NS	NS	NS	NS	NS
	8/26/04	64	14	30	45	153	7.1	NS	NS	NS	NS	NS	NS
	3/28/06	15	5.5	51	171.1	242.6	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1.75	2.09	10.9	44.7	59.44	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1.54	1.54	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	2.22	16.2	18.42	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.24	1.01	1.25	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.88 I	0.88 I	0.67 U	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.890 I	0.470 U	0.610 I	14.9	14.900	0.440 U	NS	NS	NS	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
MW-12R	3/14/02	110	20 U	63	130	303	1 U	NS	NS	NS	NS	NS	NS
	6/10/02	310	5.3	230	170	715.3	11	NS	NS	NS	NS	NS	NS
	9/9/02	100	2.5	12	14	128.5	7.8	NS	NS	NS	NS	NS	NS
	12/11/02	110	4.2	3.6	18	135.8	6.4	NS	NS	NS	NS	NS	NS
	11/6/03	2	1 U	1 U	1.5	3.5	12	NS	NS	NS	NS	NS	NS
	2/18/04	1 U	1 U	1 U	1 U	1 U	<5	NS	NS	NS	NS	NS	NS
	5/18/04	1.2	1 U	1 U	1 U	1.2	30	NS	NS	NS	NS	NS	NS
	8/26/04	4.2	1	2.8	3.7	11.7	7.7	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	47	NS	NS	NS	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	12	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
MW-13	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
	6/16/03	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
MW-14	2/9/99	2	1 U	1 U	3.0 U	2.00	3.00	NS	NS	NS	NS	NS	NS
MW-15	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
MW-16	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
MW-17	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
MW-18	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
	4/3/12	N	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	1 U	1 U	1 U	3.0 U	1 U	5.00	NS	NS	NS	NS	NS	NS
MW-21	2/9/99	13	1 U	12	3.0 U	25.00	3.0 U	NS	NS	NS	NS	NS	NS

TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

Date 6/16/03 11/6/03 2/18/04 5/18/04 8/26/04 8/26/05 12/28/05 3/28/06 9/29/06 14/107 4/18/08 10/21/08 2/3/09 5/4/09	(µg/L) 470 1.8 1 U 1 U 2.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Toluene (µg/L) 50 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	benzene (µg/L) 50 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Xylenes (µg/L) 94 1 U 1 U 1 U 2 U 2 U	VOAs (μg/L) 564 1.8 1 U 1 U 2.5	MTBE (μg/L) 320 5 U 5 U 5 U	EDB (μg/L) NS NS NS	chloro- ethane (µg/L) NS NS	Arsenic (μg/L) NS NS	Cad- mium (µg/L) NS	Chro- mium (µg/L) NS NS	Lead (μg/L) NS NS
6/16/03 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 10/21/08 2/3/09 5/4/09	470 1.8 1 U 1 U 2.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	50 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	50 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	94 1 U 1 U 1 U 1 U 2 U	564 1.8 1 U 1 U 2.5	320 5 U 5 U	NS NS	(µg/L) NS NS	NS NS	(µg/L) NS	(µg/L) NS NS	NS
6/16/03 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 10/21/08 2/3/09 5/4/09	470 1.8 1 U 1 U 2.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	50 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	50 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	94 1 U 1 U 1 U 1 U 2 U	564 1.8 1 U 1 U 2.5	320 5 U 5 U	NS NS	NS NS	NS NS	NS	NS NS	NS
11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/26/05 3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1.8 1 U 2.5 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 2 U	1.8 1 U 1 U 2.5	5 U 5 U 5 U	NS	NS	NS		NS	
2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 2.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 2 U	1 U 1 U 2.5	5 U 5 U				INO		I IVO
5/18/04 8/26/04 9/28/05 12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 2.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	1 U 1 U 2 U	1 U 2.5	5 U	NS	i No i		l No	NS	NO.
8/26/04 9/28/05 12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	2.5 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	1 U 2 U	2.5				NS	NS		NS
9/28/05 12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U 1 U	2 U			NS	NS	NS	NS	NS	NS
12/28/05 3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U		1 U	7.6	NS	NS	NS	NS	NS	NS
3/28/06 9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 1 U 1 U	1 U	1 U	2 U		5 U	NS	NS 	NS	NS	NS	NS
9/29/06 1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 1 U	1 U			1 U	5 U	NS	NS	NS	NS	NS	NS
1/4/07 4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 1 U			2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
4/18/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U	1 U		1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
7/17/08 10/21/08 2/3/09 5/4/09			1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
10/21/08 2/3/09 5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
2/3/09 5/4/09		1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2105 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.440 U	NS	NS	NS	NS	NS	NS
5/11/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
3/14/02	310	270	460	2000	3,040.00	20 U	NS	NS	NS	NS	NS	NS
6/10/02	540	520	660	1700	3,420.00	82	NS	NS	NS	NS	NS	NS
9/9/02	94	31	250	330	705.00	5 U	NS	NS	NS	NS	NS	NS
12/11/02	160	140	410	840	1,550.00	100 U	NS	NS	NS	NS	NS	NS
11/7/03	26	84	330	1500	1,940.00	79	NS	NS	NS	NS	NS	NS
2/18/04	14	3.8	4.8	7.4	30.00	30	NS	NS	NS	NS	NS	NS
5/18/04	24	1 U	48	5	77	5 U	NS	NS	NS	NS	NS	NS
8/26/04	1 U	1.2	3	8.4	13	5 U	NS	NS	NS	NS	NS	NS
9/27/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
12/28/05	6.5	1 U	1 U	140	147	5 U	NS	NS	NS	NS	NS	NS
3/28/06	1 U	1.7	17	30.3	49.0	1 U	NS	NS	NS	NS	NS	NS
9/29/06	1 U	1 U	1 U	0.43	0.43	1 U	NS	NS	NS	NS	NS	NS
1/4/07	2.9	10	18	63.5	94.4	1 U	NS	NS	NS	NS	NS	NS
8/10/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
		1 U		1 U	1 U		NS	NS	NS	NS	NS	NS
7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1 U	1U	1 U		1 U	1 U	NS	NS	NS	NS	NS	NS
5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
					0.1601 U		NS	NS	NS	NS	NS	NS
					0.36 U		NS	NS	NS	NS	NS	NS
												NS
												NS
												NS NS
5/11/99												NS
	U.160 U	0.140 U	0.190 U	0.510 U	1 U	U.18U U	NS	NS	NS NS	NS.	NS:	NS
8/20/12 11/26/12	0.83	0.48 U	1.15	5.29	7.27	0.67 U	NS	NS	NS	NS	NS	NS
	11/7/03 2/18/04 5/18/04 8/26/04 9/27/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 10/21/08 2/3/09 5/4/09 8/5/09 9/10/10 2/9/99 2/9/99 5/11/99	11/7/03 26 2/18/04 14 5/18/04 24 8/26/04 1 U 9/27/05 1 U 9/27/05 6.5 3/28/06 1 U 1/4/07 2.9 8/10/07 1 U 1/11/08 1 U 4/17/08 1 U 10/21/08 1 U 10/21/08 1 U 10/21/09 0.2105 U 8/5/09 0.2105 U 9/10/10 0.350 U 2/9/99 8.0 2/9/99 1 U 5/11/99 1 U	11/7/03	11/7/03 26 84 330 2/18/04 14 3.8 4.8 5/18/04 24 1 U 48 8/26/04 1 U 1 U 1 U 9/27/05 1 U 1 U 1 U 12/28/05 6.5 1 U 1 U 12/28/06 1 U 1.7 17 9/29/06 1 U 1 U 1 U 1/4/07 2.9 10 18 8/10/07 1 U 1 U 1 U 1/11/08 1 U 1 U 1 U 1/17/08 1 U 1 U 1 U <	11/7/03 26 84 330 1500 2/18/04 14 3.8 4.8 7.4 5/18/04 24 1U 48 5 8/26/04 1U 1.2 3 8.4 9/27/05 1U 1U 1U 2U 12/28/05 6.5 1U 1U 1U 140 3/28/06 1U 1.7 17 30.3 9/29/06 1U 1U 1U 1U 0.43 1/4/07 2.9 10 18 63.5 8 8/10/07 1U 1U <td>11/7/03 26 84 330 1500 1,940.00 2/18/04 14 3.8 4.8 7.4 30.00 5/18/04 24 1 U 48 5 77 8/26/04 1 U 1.2 3 8.4 13 9/27/05 1 U 1 U 1 U 2 U 1 U 12/28/05 6.5 1 U 1 U 1 U 140 147 3/28/06 1 U 1.7 17 30.3 49.0 9 9/29/06 1 U 1 U 1 U 0.43 0.43 147 1/4/07 2.9 10 18 63.5 94.4 94</td> <td>11/7/03 26 84 330 1500 1,940.00 79 2/18/04 14 3.8 4.8 7.4 30.00 30 5/18/04 24 1 U 48 5 77 5 U 8/26/04 1 U 1.2 3 8.4 13 5 U 9/27/05 1 U 1 U 1 U 2 U 1 U 5 U 12/28/05 6.5 1 U 1 U 1 U 140 147 5 U 3/28/06 1 U 1.7 17 30.3 49.0 1 U 1 U 9/29/06 1 U 1 U 1 U 0.43 0.43 1 U 1 U 1/4/07 2.9 10 18 63.5 94.4 1 U</td> <td>11/7/03 26 84 330 1500 1,940.00 79 NS 2/18/04 14 3.8 4.8 7.4 30.00 30 NS 5/18/04 24 1U 48 5 77 5U NS 8/26/04 1U 1.2 3 8.4 13 5U NS 9/27/05 1U 1U 1U 2U 1U 5U NS 9/27/05 1U 1U 1U 140 147 5U NS 9/27/05 1U 1U 1U 140 147 5U NS 3/28/06 6.5 1U 1U 1U 140 147 5U NS 9/29/06 1U 1U 1U 1U 0.43 0.43 1U NS 1/4/07 2.9 10 18 63.5 94.4 1U NS 8/10/07 1U 1U 1U 1U 1U</td> <td>11/7/03 26 84 330 1500 1,940.00 79 NS NS 2/18/04 14 3.8 4.8 7.4 30.00 30 NS NS 5/18/04 24 1 U 48 5 77 5 U NS NS 8/26/04 1 U 1.2 3 8.4 13 5 U NS NS 9/27/05 1 U 1 U 1 U 2 U 1 U 5 U NS NS 9/27/05 1 U 1 U 1 U 1 U 2 U 1 U 5 U NS NS 9/27/05 1 U 1 U 1 U 1 U 1 U 1 U S U NS NS</td> <td>11/7/03 26 84 330 1500 1,940.00 79 NS NS NS 2/18/04 14 3.8 4.8 7.4 30.00 30 NS NS NS 5/18/04 24 1 U 48 5 77 5 U NS NS NS 8/26/04 1 U 1.2 3 8.4 13 5 U NS NS NS 9/27/05 1 U 1 U 1 U 1 U 5 U NS NS NS NS 9/27/05 1 U 1 U 1 U 1 U 1 U 1 U S NS NS<td> 11/7/03 26</td><td> 11/7/03 26</td></td>	11/7/03 26 84 330 1500 1,940.00 2/18/04 14 3.8 4.8 7.4 30.00 5/18/04 24 1 U 48 5 77 8/26/04 1 U 1.2 3 8.4 13 9/27/05 1 U 1 U 1 U 2 U 1 U 12/28/05 6.5 1 U 1 U 1 U 140 147 3/28/06 1 U 1.7 17 30.3 49.0 9 9/29/06 1 U 1 U 1 U 0.43 0.43 147 1/4/07 2.9 10 18 63.5 94.4 94	11/7/03 26 84 330 1500 1,940.00 79 2/18/04 14 3.8 4.8 7.4 30.00 30 5/18/04 24 1 U 48 5 77 5 U 8/26/04 1 U 1.2 3 8.4 13 5 U 9/27/05 1 U 1 U 1 U 2 U 1 U 5 U 12/28/05 6.5 1 U 1 U 1 U 140 147 5 U 3/28/06 1 U 1.7 17 30.3 49.0 1 U 1 U 9/29/06 1 U 1 U 1 U 0.43 0.43 1 U 1 U 1/4/07 2.9 10 18 63.5 94.4 1 U	11/7/03 26 84 330 1500 1,940.00 79 NS 2/18/04 14 3.8 4.8 7.4 30.00 30 NS 5/18/04 24 1U 48 5 77 5U NS 8/26/04 1U 1.2 3 8.4 13 5U NS 9/27/05 1U 1U 1U 2U 1U 5U NS 9/27/05 1U 1U 1U 140 147 5U NS 9/27/05 1U 1U 1U 140 147 5U NS 3/28/06 6.5 1U 1U 1U 140 147 5U NS 9/29/06 1U 1U 1U 1U 0.43 0.43 1U NS 1/4/07 2.9 10 18 63.5 94.4 1U NS 8/10/07 1U 1U 1U 1U 1U	11/7/03 26 84 330 1500 1,940.00 79 NS NS 2/18/04 14 3.8 4.8 7.4 30.00 30 NS NS 5/18/04 24 1 U 48 5 77 5 U NS NS 8/26/04 1 U 1.2 3 8.4 13 5 U NS NS 9/27/05 1 U 1 U 1 U 2 U 1 U 5 U NS NS 9/27/05 1 U 1 U 1 U 1 U 2 U 1 U 5 U NS NS 9/27/05 1 U 1 U 1 U 1 U 1 U 1 U S U NS NS	11/7/03 26 84 330 1500 1,940.00 79 NS NS NS 2/18/04 14 3.8 4.8 7.4 30.00 30 NS NS NS 5/18/04 24 1 U 48 5 77 5 U NS NS NS 8/26/04 1 U 1.2 3 8.4 13 5 U NS NS NS 9/27/05 1 U 1 U 1 U 1 U 5 U NS NS NS NS 9/27/05 1 U 1 U 1 U 1 U 1 U 1 U S NS NS <td> 11/7/03 26</td> <td> 11/7/03 26</td>	11/7/03 26	11/7/03 26

TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

				Ethyl-	Total	Total			1,2-Di-	Total	Total	Total	Total
San	nple	Benzene	Toluene	benzene	Xylenes	VOAs	MTBE	EDB	chloro-	Arsenic	Cad-	Chro-	Lead
	l	(va/1)	(11m/l)		-		(vert)	(vert)	ethane		mium	mium	
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-28	11/7/03	270	16	280	350	916	16	NS	NS	NS	NS	NS	NS
	2/18/04	340	13	250	280	883	50 U	NS	NS	NS	NS	NS	NS
	5/18/04	140	2.1	160	81	383.1	12	NS	NS	NS	NS	NS	NS
	8/26/04	1200	230	390	710	2,530	410	NS	NS	NS	NS	NS	NS
	9/27/05	24	1.3	15	28	68.3	6.5	NS	NS	NS	NS	NS	NS
	12/28/05	36	1 U	1 U	2 U	36	24	NS	NS	NS	NS	NS	NS
	3/29/06	86	3.5	30	49.9	169.4	12	NS	NS	NS	NS	NS	NS
	9/29/06	960	70	480	880	2,390	110	NS	NS	NS	NS	NS	NS
	1/5/07	110	7.6	72	109	298.6	18 I	NS	NS	NS	NS	NS	NS
	8/10/07	38.9	1.15	48.8	36.6	125.5	6.17	NS	NS	NS	NS	NS	NS
	1/11/08	17.9	1 U	25.4	18.6	61.90	3.63	NS	NS	NS	NS	NS	NS
	4/18/08	1.56	1 U	13.4	10.3	25.26	4.41	NS	NS	NS	NS	NS	NS
	07/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.22	0.2310 U	0.22	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 I	NS	NS	NS	NS	NS	NS
by others	11/8/11	0.330 U	0.470 U	0.320 U	0.980 U	NS	0.830 T	NS	NS	NS	NS	NS	NS NS
	1/3/12	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS
						NS		NS	NS	NS NS	NS	NS	NS NS
	8/20/12	NS	NS	NS	NS	NS NS	NS	NS	-		NS	NS	NS NS
	11/26/12	NS	NS	NS	NS		NS		NS	NS			
	2/25/13	NS	NS	NS	NS	NS NS	NS						
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS 	NS	NS	NS 	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-29	11/7/03	2900	100 U	4400	2900	10,200	500 U	NS	NS	NS	NS	NS	NS
	2/18/04						no sa			1			
	5/18/04	3700	18	5000	380	9,098	50 U	NS	NS	NS	NS	NS	NS
	8/26/04	1800	54	4800	560	7,214	250 U	NS	NS	NS	NS	NS	NS
	9/27/05	100	2.5	180	110	393	2	NS	NS	NS	NS	NS	NS
	12/28/05	98	1 U	110	43	251	5 U	NS	NS	NS	NS	NS	NS
	1/31/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	2.4	1 U	7.7	2 U	10	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1.3	1 U	1.5	1 U	2.8	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	0.14 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/10/07	4.04	1 U	1 U	1 U	4.04	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	07/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	1.23	0.1601 U	0.1959 U	0.2310 U	1.23	0.7800	NS	NS	NS	NS	NS	NS
	10/28/09	0.94	0.48 U	0.45 U	0.82 U	0.94	0.67 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	0.46 U	0.45 U	0.82 U	NS	0.67 U	NS	NS	NS	NS	NS	NS
		5.3	0.470 U	0.520 U	0.980 U	5.3	0.440 U	NS	NS NS	NS NS	NS	NS NS	NS NS
by others									INO	INO	INO		140
by others	9/10/10					22.02		NIC	NC	NC	NC	NC	NC
by others	9/10/10 11/5/10 11/8/11	9.15 0.8	0.48 U 0.48 U	7.12 0.45 U	6.76 0.87 U	23.03	0.67 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS

TABLE 1a: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility Name: Combs Oil Bulk Plant

See notes at end of table.

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-30	11/6/03	2	1 U	1.5	1 U	3.5	5 U	NS	NS	NS	NS	NS	NS
	2/18/04	3.5	1 U	1 U	1 U	3.5	5 U	NS	NS	NS	NS	NS	NS
	5/18/04	8.7	1 U	1 U	1 U	8.7	5 U	NS	NS	NS	NS	NS	NS
	8/26/04	29	2.6	6.9	20	58.5	5 U	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	20	NS	NS	NS	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	16	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 I	NS	NS	NS	NS	NS	NS
MW-31	11/6/03	1 U	1.8	1.9	3	6.70	5 U	NS	NS	NS	NS	NS	NS
	2/18/04						no sai	mple					
	5/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	8/26/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
MW-32	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
MW-33	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	0.160 U	0.140 U	0.190 U	0.510 U	0.140 U	0.180 U	NS	NS	NS	NS	NS	NS
	11/26/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
GC	TLs	1**	40**	30**	20**	NA NA	20	0.02**	3**	10**	5**	100**	15**
NAI		100	400	300	200	NA NA	200	2	300	100	50	1,000	150
Notes:		Sampled	400	300	200	INA	200		300	100	30	1,000	130

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

 ** = As provided in Chapter 62-550, F.A.C.

U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

				1-Methyl-	2-Methyl-	Acen-	Acen-		Benzo			I		Benzo	Benzo	Benzo	Benzo		Dibenz	Indeno
Sam	nple	TRPHs	Naph- thalene	naph- thalene	naph- thalene	aph- thene	aph- thylene	Anthra- cene	(g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	(a) pyrene	(a) anthra- cene	(b) fluoran- thene	(k) fluoran- thene	Chry- sene	(a,h) anthra- cene	(1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	iene (μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	cene (μg/L)	(µg/L)	(µg/L)	(µg/L)	cene (μg/L)	(µg/L)
MW-1	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-2	2/9/99	NS	1,419	1 U	1 U	29	37	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-4	2/9/99	NS	74	1 U	1 U	21	25	1 U	1 U	1 U	24.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-5	2/9/99	NS	22.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	23	5.9	3.7	10	10	10	10	10	1 U	1 U	10	10	1 U	1 U	1 U	1 U	1 U	1 U
	11/8/11	160 U	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	1/3/12	307 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	4/3/12	170 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.059 I	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	8/20/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	0/10/14		NO	NO	145	NO	140				140	140	140	NO			140	140		
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	510	1400	1800	100	10 U	1 U	1 U	1 U	190	360	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	9,700	12	37	17	2.8	1 U	1 U	1 U	1 U	3.6	3.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	1 U	5.5	1 U	1.5	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	25	13	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	10 U	16	12	13	10 U	1 U	1 U	1 U	15	23	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/05	NS	16	34	30	2.7	1 U	1 U	1 U	1 U	2.5	1.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	4.8	6	7.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	19	36	46	2.5	1 U	1 U	1 U	1 U	2.5	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	6.9	12	13	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	4.56	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.29	1.20	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.037	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.099	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.473	0.218	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	3,495	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2, 011.013	11/5/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	1,236	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	3.827	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	4/3/12	1,569	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	2/25/13	4,582	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	5/23/13	2,865	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
		2,961						NS NS	NS NS	NS NS					NS NS	NS NS			NS NS	NS NS
	11/20/13	6,210	NS	NS	NS	NS NO	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NO	NS NS	NS NS	NS	NS	NS NS	NS NS
	6/10/14		NS	NS	NS	NS	NS				NS	NS	NS	NS NO			NS	NS		<u> </u>
	11/19/14	2,170	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	9,560	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	1,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	1,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	3,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	760	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
					l			l	l			l	l	l	l	I		l	l	1

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	140	100	130	9.4	1 U	1 U	1 U	1 U	10	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	26,000	14	15	14	1.9	1 U	1 U	1 U	1 U	2.8	3.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	13	7.4	7.8	1.2	1 U	1 U	1 U	1 U	1.6	1.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	66	34	46	1.7	1 U	1 U	1 U	1 U	2.4	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	19	15	14	2	1 U	1 U	1 U	1 U	2	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	7.5	8.8	7.2	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.463	0.527	0.716	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.260	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	16,500	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/10	428 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	12,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	28,367	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	30,299	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	12,972	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	12,390	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	11,486	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	11,214	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	12,748	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	19,982	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	27,386	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	15,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	17,800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	7,900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	24,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	2/9/99	NS	32.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	720 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/21/2010	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	934.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/5/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	0.220 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

Location MW-11		TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
MW-11	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	5/11/99	NS	1.3	1 U	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-11R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/6/03	2,100.00	4.7	4	5.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04										no sample									
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	235.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
MW-12R	3/14/02	NS	24	11	15	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	82	43	57	1.5	1 U	1 U	1 U	1 U	2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	3.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS 3,100.00	36	17	22	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/6/03	3,100.00 NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS NS	1.1	1.5	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS NS	2	1.8	2.3	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	10	1 U
	8/26/04 9/28/05	NS NS	1 1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS NS	10	10	10	1 U	10	1 U	1 U	1 U	10	1 U	1 U	10	1 U	10	1 U	1 U	10	1 U
	3/29/06	NS	10	10	10	10	10	10	1 U	1 U	10	1 U	10	1 U	10	10	1 U	10	10	1 U
	9/29/06	NS NS	10	10	10	1 U	10	10	10	1 U	10	10	10	10	1 U	10	10	1 U	10	1 U
	1/4/07	NS	10	1 U	10	1 U	10	10	1 U	1 U	1 U	1 U	10	1 U	10	10	10	10	1 U	1 U
	1/11/08	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS
	4/18/08	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
MW-13	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
WIVV-13	6/16/03	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	1/31/06	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

Sam	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-14	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-15	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-16	2/9/99	NS	7.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-17	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-18	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	222 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	426 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21	2/9/99	NS	10.0	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 U
	11/6/03	2,500.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	2	2.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2.8	2.4	3.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS NS	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	10	1 U
	2/3/09 5/4/09	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.003 U	0.003 U	0.160 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.160 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
by others	9/10/10	115.00	0.173 U	0.153 U	0.160 U	0.047 U	0.096 U	0.096 U	0.098 U	0.096 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.034 0 NS	NS
by others	9/10/10	113.00	145	142	N5	149	INO	140	140	140	149	145	145	INS	140	143	145	142	143	143

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-22	5/11/99	NS	FP	FP	FP	FP	FP	NS	NS	NS	FP	FP	FP	FP	NS	NS	FP	FP	NS	NS
MW-22R	3/14/02	NS	52	21	32	1 U	1 U	1 U	1 U	1 U	1.4	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	48	72	1 U	2.5	1.7	1 U	1 U	1 U	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	35	17	28	1 U	1 U	1 U	1 U	1 U	1.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	83	32	51	1.3	1 U	1 U	1 U	1 U	1.7	25	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	5,000.00	35	10	26	1 U	1 U	1 U	1 U	1 U	1	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	8.5	8.8	14	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	10/21/08	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS NS	1 U	1 U	NS NS	NS NS
	2/3/09	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS NS	NS NS	1 U	1 U	NS NS	NS NS
\vdash	5/4/09 8/5/09	NS NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			1 U	1 U		0.002 U
	10/28/09	NS NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.010	0.231	0.001 U 0.160 U	0.001 U 0.160 U	0.011	0.002 U	0.002 U	0.002 U
by others	9/10/10	46 U	0.173 U NS	0.153 U NS	0.160 U NS	0.047 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.160 U NS	0.160 U NS	0.128 U NS	0.067 U NS	0.160 U NS	0.160 U NS	0.052 U NS	0.054 U NS	0.054 U NS	0.034 U
MW-23	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-25	2/9/99	NS	5 U	1 U	10	3 U	3 U	10	10	10	5 U	1 U	10	10	1 U	1 U	10	1 U	1 U	10
MW-26	5/11/99	NS NS	1 U	10	10	1 U	1 U	10	10	10	1 U	10	10	10	10	1 U	10	10	1 U	1 U
MW-26R	8/20/12	NS NS	1.18	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS		NS NS	NS NS	NS NS
MVV-26R	11/26/12	NS NS	1.18 NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
MW-27		NS NS		1 U		1 U	1 U	1 U				1 U				1 U		1 U		1 U
INIVV-27	5/11/99	145	1.7	1 10	1 U	10	10	10	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	10	1 U	10

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

MW-28	Sample	le	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
27804 NS	ocation	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
STROM NS	MW-28	11/7/03	4,600.00	14	12	13	2	1 U	1 U	1 U	1 U	2.7	4.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
		2/18/04	NS	29	21	26	2.2	1 U	NS	NS	NS	3.2	5.8	1 U	1 U	NS	NS	1 U	1 U	1 U	1 U
9/27/06 NS		5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
12/2805 NS	8	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
32906 NS	9	9/27/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS
92006 NS	1	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1/5/07 NS	:	3/29/06	NS	NS	NS	NS	NS	NS				NS	NS	NS	NS			NS	NS	NS	NS
Britono NS																				NS	NS
1/11/108																				NS	NS
4/18/08													<u> </u>	<u> </u>						NS	NS
0717708		1/11/08																		NS	NS
10/21/08 NS NS NS NS NS NS NS N													<u> </u>	<u> </u>						NS	NS
2/3/09 NS																				NS	NS
5/4/09																				NS	NS
8,509 NS																				NS	NS
10/28/09 NS																				NS	NS
Dyothers 9/10/10 11,200 0.127 0.126 0.134 0.320 0.025 U 0.																				NS	NS
11/8/11 7,546																				NS	NS
1/3/12 9,396 0,173 U	,		,																	0.025 U	0.025 U
4/3/12 3,800 0.173 U 0.153 U 0.160 U 0.047 U 0.098 U 0.098 U 0.098 U 0.098 U 0.160 U 0.181 0.128 U 0.067 U 0.067 U 0.067 U 0.052 U 0.054 U 0.067 U 0.067 U 0.052 U 0.054 U 0.067 U 0.067 U 0.067 U 0.052 U 0.054 U 0.054 U 0.055 U 0.054 U 0.055 U 0.0			,																	0.054 U	0.054 U
8/20/12 5,326																				0.054 U	0.054 U
11/28/12 15,372 NS																				0.054 U NS	0.054 U NS
229/13 8,981 NS																				NS NS	NS NS
5/23/13 1,006 NS			-7-																	NS NS	NS NS
11/20/13 28,520 NS																				NS NS	NS NS
6/10/14 17,450 NS			,																	NS NS	NS
11/19/14 10,100 NS																				NS	NS
5/19/15 5,840 NS			_																	NS	NS
12/23/15 12,000 NS														†						NS	NS
6/16/16 9,000 NS			_																	NS	NS
12/21/16 14,000 NS			,									_	<u> </u>	†						NS	NS
			-,																	NS	NS
ו או		6/19/17	5,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

									D						D	D	D		Dileann	
San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-29	11/7/03	30,000.00	54	20	36	1.3	1 U	1 U	1 U	1 U	1.9	3.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04										no sample									
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/31/06	NS	5.5	1.6	1.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS
	4/18/08	NS NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
	07/17/08 10/21/08	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/3/09	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	5/4/09	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	8/5/09	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	10/28/09	NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	2/23/10	959.00	NS NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS	NS
by others	9/10/10	2,350.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	11/5/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	976.00	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	216 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
MW-30	11/6/03	5,600.00	10	1 U	1 U	10	1 U	NS	NS	NS	10	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	1 U
	2/18/04	NS	1 U	2.2	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	7.4	4.2	6.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.010 U	0.010 U	0.010 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	509 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	151.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 1b: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-31	11/6/03	650 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04		no sample																	
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-32	1/31/06	260.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-33	1/31/06	300.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	186 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	651.00	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	11/26/12	167 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/25/13	183 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	568.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
GCT	Ls	5,000	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NAD	Cs	50,000	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5

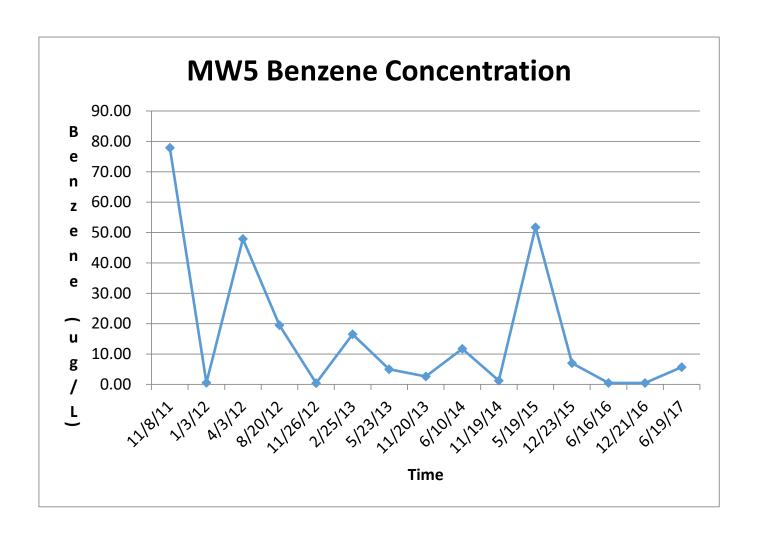
Notes:

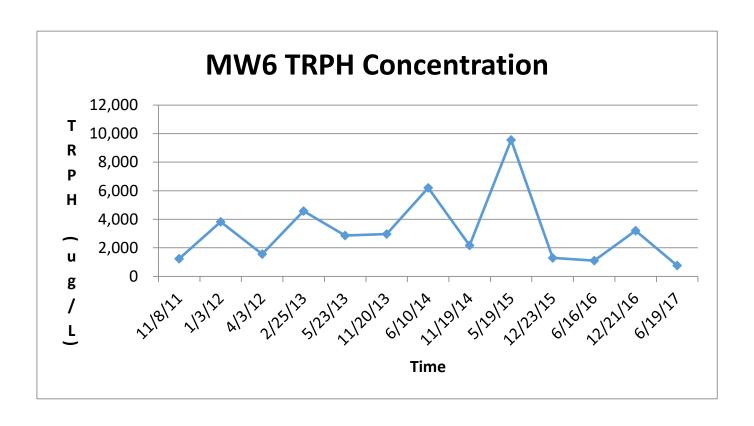
FP = Well contained free product

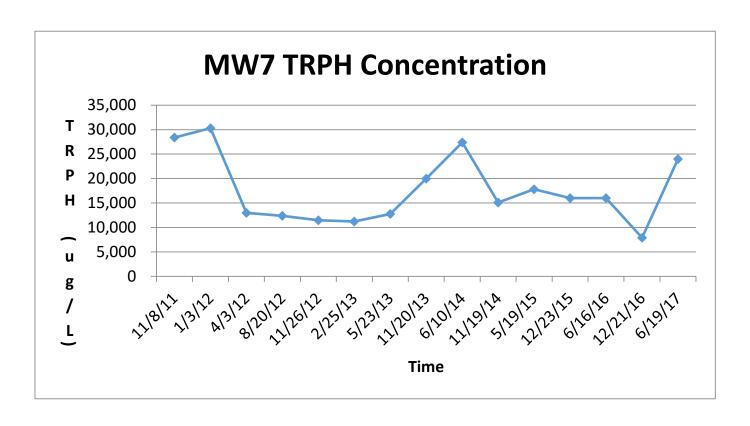
NS = Not Sampled.

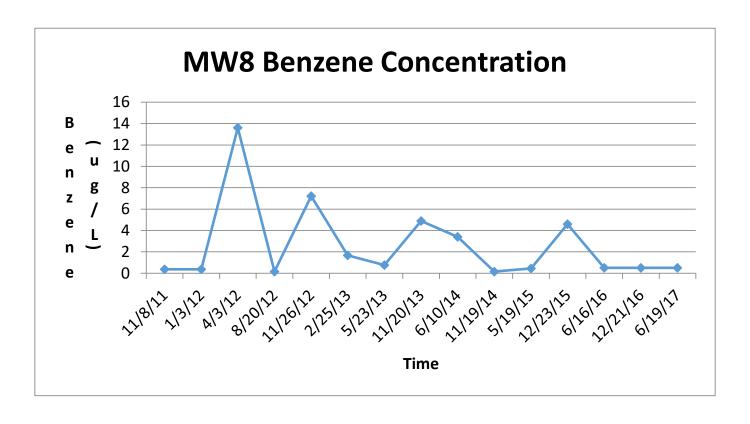
GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

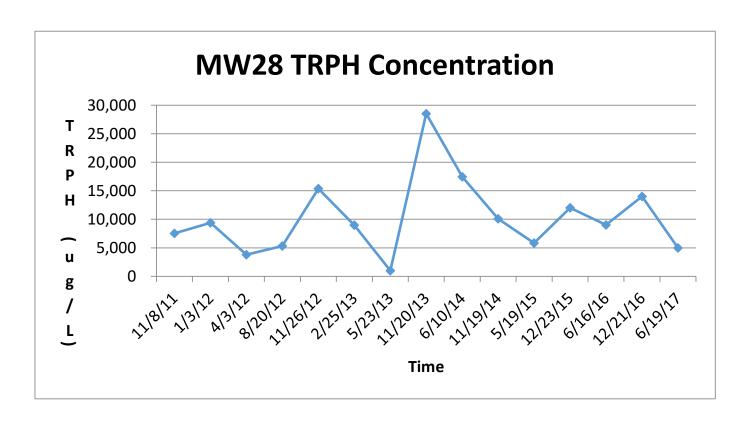
NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

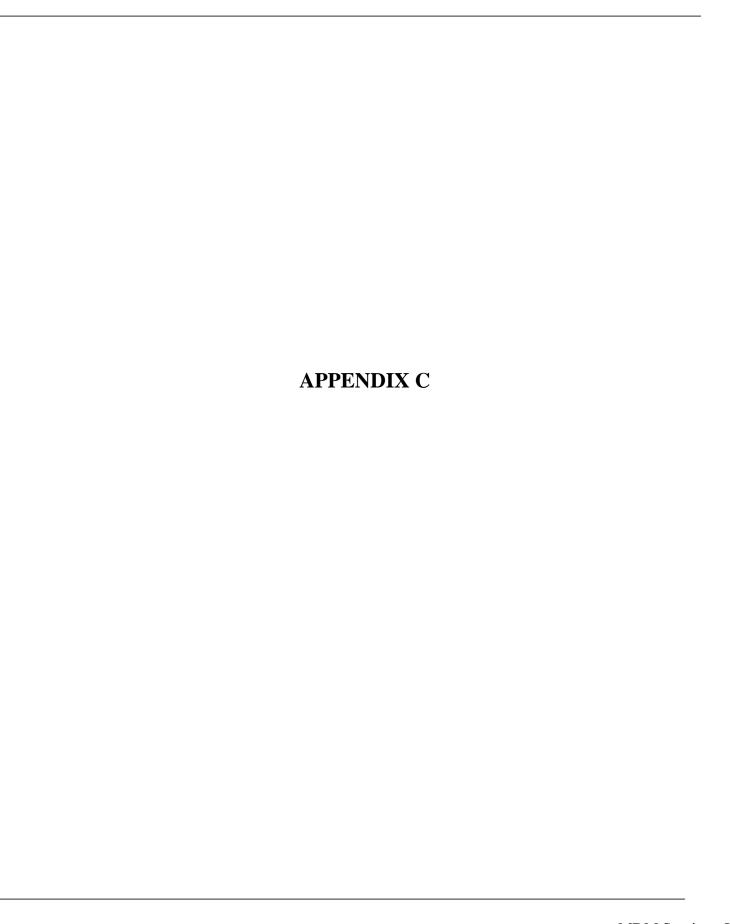

- ** = As provided in Chapter 62-550, F.A.C.
- a = See the October 12, 2004 "Guidance for the Selection of Analytical Methods and for the Evaluation of Practical Quantitation Limits" to determine how to evaluatie data when the CTL is lower than the PQL.
- U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.


TABLE 1c: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - NA PARAMETERS


Facility ID#: 11/8839176 Facility Name: Combs Oil Co. Bulk Plant


Saı	mple	Nitrate	Dissolved Iron	Orthophosphate Phosphorus	Sulfate	Methane
Location	Date	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(ug/L)
MW6	11/19/2014	0.160	5000	0.00600	4.89	1340
MW8	11/19/2014	0.129	3240	0.0118	2.78	896
MW28	11/19/2014	0.106 U	506	0.201	31.6	1400


U = Constituent not detected to the level shown.





Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

June 27, 2017

Jeff Morgan MDM Services 1055 Kathleen Rd Lakeland, FL

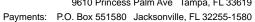
RE: Workorder: T1710585 Combs Oil

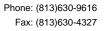
Dear Jeff Morgan:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, June 20, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

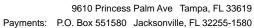

Angela Harlan - Client Services Manager AHarlan@AELLab.com


angela Harlan

Enclosures

Report ID: 493659 - 794922 Page 1 of 11

SAMPLE SUMMARY


Workorder: T1710585 Combs Oil

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1710585001	MW-5	Water	6/19/2017 11:01	6/20/2017 10:30
T1710585002	MW-6	Water	6/19/2017 11:17	6/20/2017 10:30
T1710585003	MW-7	Water	6/19/2017 11:35	6/20/2017 10:30
T1710585004	MW-8	Water	6/19/2017 11:51	6/20/2017 10:30
T1710585005	MW-28	Water	6/19/2017 12:07	6/20/2017 10:30

Report ID: 493659 - 794922 Page 2 of 11

CERTIFICATE OF ANALYSIS

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1710585 Combs Oil

Date Received: 06/20/17 10:30 Lab ID: T1710585001 Matrix: Water

MW-5 Date Collected: 06/19/17 11:01 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration N	Method: S	W-846 5030B				
	Ana	lytical Me	thod: SW	-846 8260B				
Benzene	5.7		ug/L	1	1.0	0.17	6/21/2017 20:59	Т
Ethylbenzene	0.26	U	ug/L	1	1.0	0.26	6/21/2017 20:59	Т
Methyl tert-butyl Ether (MTBE)	3.4		ug/L	1	1.0	0.41	6/21/2017 20:59	Т
Toluene	0.45	U	ug/L	1	1.0	0.45	6/21/2017 20:59	Т
Xylene (Total)	1.1	U	ug/L	1	3.0	1.1	6/21/2017 20:59	Т
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		6/21/2017 20:59	
Toluene-d8 (S)	102		%	1	77-119		6/21/2017 20:59	
Bromofluorobenzene (S)	98		%	1	86-123		6/21/2017 20:59	
Lab ID: T1710585002				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-6					06/19/17 11:17			
Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: FL-PRO Analysis, Water	Prep	paration N	Method: F	L-PRO				
	Ana	lytical Me	thod: FL-	PRO				
TPH	0.76		mg/L	1	0.63	0.56	6/23/2017 11:58	Т
o-Terphenyl (S)	91		%	1	82-142		6/23/2017 11:58	
Nonatricontane-C39 (S)	77		%	1	42-193		6/23/2017 11:58	
Lab ID: T1710585003				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-7					06/19/17 11:35			
Campio IS. IIIII				_ 210 0003100.	22, 10, 11			
Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab

SEMIVOLATILES

Report ID: 493659 - 794922 Page 3 of 11

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Adjusted

Adjusted

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1710585 Combs Oil

Date Received: 06/20/17 10:30 Lab ID: T1710585003 Matrix: Water

Date Collected: 06/19/17 11:35 Sample ID: **MW-7**

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: FL-PRO Analysis, Water	Prep	paration l	Method: FL-	PRO				
TPH	24		mg/L	1	0.63	0.56	6/23/2017 06:27	Т
o-Terphenyl (S)	191	J4	%	1	82-142		6/23/2017 06:27	
Nonatricontane-C39 (S)	64		%	1	42-193		6/23/2017 06:27	

Date Received: 06/20/17 10:30 Matrix: Water Lab ID: T1710585004

Sample ID: MW-8 Date Collected: 06/19/17 11:51

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	/-846 5030B				
	Ana	ytical Me	ethod: SW-8	346 8260B				
Benzene	0.37	ı	ug/L	1	1.0	0.17	6/21/2017 21:47	Т
Ethylbenzene	0.26	U	ug/L	1	1.0	0.26	6/21/2017 21:47	Т
Methyl tert-butyl Ether (MTBE)	0.41	U	ug/L	1	1.0	0.41	6/21/2017 21:47	Т
Toluene	0.45	U	ug/L	1	1.0	0.45	6/21/2017 21:47	Т
Xylene (Total)	1.1	U	ug/L	1	3.0	1.1	6/21/2017 21:47	Т
1,2-Dichloroethane-d4 (S)	103		%	1	70-128		6/21/2017 21:47	
Toluene-d8 (S)	100		%	1	77-119		6/21/2017 21:47	
Bromofluorobenzene (S)	98		%	1	86-123		6/21/2017 21:47	

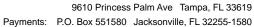
Lab ID: T1710585005 Date Received: 06/20/17 10:30 Matrix: Water

Date Collected: 06/19/17 12:07 Sample ID: MW-28

Sample Description: Location:

Adjusted Adjusted Analyzed Lab **Parameters** Results Qual Units DF **PQL** MDL

SEMIVOLATILES


Analysis Desc: FL-PRO Analysis, Water Preparation Method: FL-PRO

Analytical Method: FL-PRO

Report ID: 493659 - 794922 Page 4 of 11

CERTIFICATE OF ANALYSIS

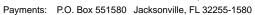
Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1710585 Combs Oil

Date Received: 06/20/17 10:30 Lab ID: T1710585005 Matrix: Water

MW-28 Date Collected: 06/19/17 12:07 Sample ID:


Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
TPH	5.0		mg/L	1	0.63	0.56	6/23/2017 06:55	
o-Terphenyl (S)	82		%	1	82-142		6/23/2017 06:55	
Nonatricontane-C39 (S)	58		%	1	42-193		6/23/2017 06:55	

Report ID: 493659 - 794922 Page 5 of 11

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1710585 Combs Oil

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 Estimated Result

LAB QUALIFIERS

T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 493659 - 794922 Page 6 of 11

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1710585 Combs Oil

QC Batch: MSVt/3203 Analysis Method: SW-846 8260B QC Batch Method: SW-846 5030B Prepared: 06/21/2017 12:57

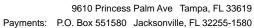
Associated Lab Samples: T1710585001, T1710585004

METHOD BLANK: 2387090

Parameter	Units	Blank Result	Reporting Limit Qualifiers
VOLATILES			
Methyl tert-butyl Ether (MTBE)	ug/L	0.41	0.41 U
Benzene	ug/L	0.17	0.17 U
Toluene	ug/L	0.45	0.45 U
Ethylbenzene	ug/L	0.26	0.26 U
Xylene (Total)	ug/L	1.1	1.1 U
1,2-Dichloroethane-d4 (S)	%	90	70-128
Toluene-d8 (S)	%	103	77-119
Bromofluorobenzene (S)	%	95	86-123

LABORATORY CONTROL SAMPLE: 2387091

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
VOLATILES						
Methyl tert-butyl Ether (MTBE)	ug/L	20	18	92	70-130	
Benzene	ug/L	20	19	93	70-130	
Toluene	ug/L	20	21	107	70-130	
Ethylbenzene	ug/L	20	20	100	70-130	
Xylene (Total)	ug/L	60	61	101	70-130	
1,2-Dichloroethane-d4 (S)	%			90	70-128	
Toluene-d8 (S)	%			97	77-119	
Bromofluorobenzene (S)	%			110	86-123	


MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2387092				2387093 Original: T1710558003							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
VOLATILES Methyl tert-butyl Ether (MTBE) Benzene Toluene	ug/L ug/L ug/L	0 0 0	20 20 20	17 19 22	17 19 21	87 95 109	87 97 106	70-130 70-130 70-130	0 2 3	30 30 30	

Report ID: 493659 - 794922 Page 7 of 11

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1710585 Combs Oil

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2387092				2387	093	Original: T1710558003					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD (Qualifiers
Ethylbenzene	ug/L	0.36	20	22	21	109	106	70-130	3	30	
Xylene (Total)	ug/L	0	60	67	64	111	107	70-130	4	30	
1,2-Dichloroethane-d4 (S)	%	90				92	90	70-128	2		
Toluene-d8 (S)	%	99				97	92	77-119	5		
Bromofluorobenzene (S)	%	116				115	115	86-123	0		

Analysis Method: QC Batch: EXTt/2428 FL-PRO

QC Batch Method: FL-PRO 06/22/2017 10:15 Prepared:

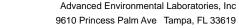
Associated Lab Samples: T1710585002, T1710585003, T1710585005

METHOD BLANK: 2387107

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
SEMIVOLATILES				
TPH	mg/L	0.60	0.60 U	
o-Terphenyl (S)	%	85	82-142	
Nonatricontane-C39 (S)	%	63	42-193	

LABORATORY CONTROL SAMPLE: 2387108

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
SEMIVOLATILES		2.4	2.0	0.7	EE 440	
TPH	mg/L	3.4	3.0	87	55-118	
o-Terphenyl (S)	%			82	82-142	
Nonatricontane-C39 (S)	%			63	42-193	


MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2387109			2387	110	Original: T1710568006						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S)	mg/L % %	0.082	3.4	3.3	3.1	96 103 83	92 98 79	41-101 82-142 42-193	4 5 4	20 20 20	

Report ID: 493659 - 794922 Page 8 of 11

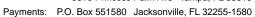
CERTIFICATE OF ANALYSIS

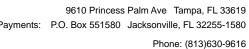
This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA


Workorder: T1710585 Combs Oil


Report ID: 493659 - 794922 Page 9 of 11

CERTIFICATE OF ANALYSIS

Fax: (813)630-4327

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1710585 Combs Oil

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1710585001	MW-5	SW-846 5030B	MSVt/3203	SW-846 8260B	MSVt/3204
T1710585004	MW-8	SW-846 5030B	MSVt/3203	SW-846 8260B	MSVt/3204
T1710585002	MW-6	FL-PRO	EXTt/2428	FL-PRO	GCSt/1915
T1710585003	MW-7	FL-PRO	EXTt/2428	FL-PRO	GCSt/1915
T1710585005	MW-28	FL-PRO	EXTt/2428	FL-PRO	GCSt/1915

Report ID: 493659 - 794922 Page 10 of 11

CERTIFICATE OF ANALYSIS

Queue: GCSt Batch Number: 1915

I. Receipt

S1700919022:

The above sample arrived in an improperly preserved bottle for FL PRO analysis. The analyst preserved the sample to <2 per method critieria before extraction. No further

corrective action was required.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: FL-PRO Preparation: FL-PRO

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: T1710585003:

The control criterion was exceeded for o-Terphenyl in the above sample due to visible matrix interference. The affected surrogate was qualified accordingly. No further

corrective action was required.

D. Spikes: All acceptance criteria were met.E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

I certify that this data package is in compliance with the terms and conditions agreed to by Advanced Environmental Laboratories, Inc. and by the client, both technically and for completeness, except for the conditions detailed above. The Quality Assurance Officer, or designee, as verified by the following signature, has authorized release of the data contained in this data package:

		30	Site-Arkhees	Site	_							+			4
	1				1	18.0			-	1					0
	PWS ID:	(When PWS Information not otherwise supplied) Contact Person:	When PWS Informa Contact Person:	Con		740	11029 11029	the o	Special Section of the section of th	A. S.	V.	20/17	to the		2 -
		(ING WATER USE:	OR DRINKING	FOR		Time	Date	10	Received by:	Rec	Time	Date	shed-by:	Relinquished by	1
S: 1V	GILT-1 LT-2 TOBA A: 3A M: 3A S:	J: 9A	(circle IR temp gun used)	entifier (circ	y unique id.	ng Temp b	Device used for measuring Temp by unique identifier	Device used	2				revised 11/17/18	OCN: AD-051 Form last revised 11/17/16	Į Š
°C	°C Temp. when received (corrected)	4.0	received (Temp. when received (observed)		checked	Where required, pH checked	Where :		☐ Temp from blank		☐ Temp taken from sample	es No Z	teceived on loe Yes	(ecer
Thiosulfate)	Preservation Code: I = ice H=(HCI) S = (H2SO4) N = (HNO3) T = (Sodium Thiosulfate)	Code: I = ice H=(HCI) :	eservation		SL = sludge	SO = soil	A = air	er 0 = oil	DW = drinking water		GW = ground water	SW = surface water (in	Matrix Code: WW = wastewater	Matr
															1
8			×			_	2	12:07	Mala					82-MW	S
ο _υ -ί				×	NI -	W	E	11:51	Colvelo					8-1-8	130
8			<u> </u>				Sw.	11:35	Californ			N.		Mw-7	3
002			X			7	E	11:17	1919					M-cmy)	2000
9.				X		W	Ce	(rilalia)	() (a)					MUS	13
LA					Figd- Filtered?			TIME	DATE	Comp	1014	0 0	67 2000		
BC		0	5 5	Į	Pa	NO.	MATRIX	SAMPLING		Grab	NOIT	SAMPLE DESCRIPTION	SAMPL	SAMPLE ID	SA
RA			_	T	,		ther	s 🗆 Other	□EQuIS	WADaPT	1			EL Profile #:	E Pr
то		W	#35 CWC		ANA						P	æ	NDARD RUSH	um Around Time: STANDARD	um A
RY		IS	re		LYS					Special Instructions:	Speci	O1	RIVENIS	ampled by: Add white for	ample
I.D.		(N)	PH		IS R			5	Immokinter it	Townsk			000000	JEAR MORGERS) in
NU		20	D)	MP	EQU			Main St.	D. Ma	FUEP Facility Address:	HUEF		B63-648-1106	Acres on	3
МВ				»E	IRE			11P	1188391	FDEP Facility No:	FDEF		8113-646-9130		none:
ER)				20815	PO Number 20	PON	33805	akeland, Fr.	L	
									20815	3	elone	\$	KOHWING S	1055	uuless.
				OHU-Y-	TTLE & TYPE			0,1	Sawa	Project Name:	Proje	HZ	MDM Seculius	1 18	lient
89.2281 0.4327	Militamiatr 10200 USA Today Way, Miramar, FL 33025 • 854,869,2280 • Fax 954,899,2281	☐ Miramar; 10200 USA To ☐ Tampa; 9610 Princess P		0.219.6275) • Fax 904.363; 19.6274 • Fax 86	904.363.9350 32303 • 860.21	onville, FL 32216 Tallahassee, FL	nt Pkery - Jacks noe St., Suite D.	8681 Southpain 2639 North Word	Jacksonville: 6581 Southpoint Plany - Jacksonville, FL 30216 + 904 363.9350 - Fax 904 363.9354 Tallahassee: 2639 North Womee St., Suite D. Tallahassee, FL 32303 + 650.219.5274 - Fax 850.219.5275		c Labacican A	Florida's Largust Laboutour Vectoris		
2.395.8839	352.377.2349	Gainesville: 4965 SW	937.1597	7.1594 • Fax 407	32701 - 407.93	nte Springs, FL	%. 1048 • Altano	orthake Blvd_S	rings: 300 N	Altamonte Springs: 300 Northale Blvd., Sta. 1048 - Altamonte Springs, FL 32701 - 407 937 1594 - Fax 407 937 1597		Environmental Lahoratories Inc	Finvironment		
	Page 1 of												hooneaha		1

SITE NAME: C	ombs Oil				1 .	TE OCATION: 52	25 E. Main 9	St., Immokal	ee. FL.		
WELL NO:				SAMPLE	: ID: MW-5			1	DATE: 6/1	9/2017	
					PURC	ING DA	TA				
WELL	1	TUB			LL SCREEN		STATIC	DEPTH ER (feet): 3.4	PU	RGE PUMP T	YPE ' P
WELL VO		1 WELL V	ETER (inches): OLUME = (TO	TAL WELL DEF	PTH: 1.5 fee	It to I I leet TIC DEPTH 1		WELL CAPACI		BAILEN: {	
(only fill ou	it if applicable)		- / 1	1 feet –	3 10	fpat'	v 0.65	gallons/foot =	1 2 10	gallons	
	NT VOLUME P	URGE: 1 E	DUIPMENT VO	L. = PUMP VOI	UME + (TUE	ING CAPACI	TY X TI	UBING LENGTH)	+ FLOW CI		
1 4 4 4 4 5 1				= g	allons + (gallo	ons/foot X	feet)	+	gallons	= gallons
INITIAL PU DEPTH IN	JMP OR TUBIN WELL (feet):	65.0		MP OR TUBING WELL (feet):	5.0	PURGIN	IG ED AT: (0):50	PURGING ENDED AT:	lion	TOTAL VOI PURGED (LUME gallons): 2.20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gallons	PURGE PATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or (mS/cm)	DISSOLVED OXYGEN (prote units) mg/L or % saturation	TURBIDI (NTUs)		
10:57	64-1	1.40	-20	3.41	6.1	78.2	0.49	0.22	50	clear	petrol
10:59	,५०	1.80	T	3.41	6-1	28.2	PPCO	15.0	18	(*	1 4
11:01	,40	2.20	-20	3.41	١٠٥	28.2	०,५५	0.19	17	\ -	
										_	
											
-	-		_						-	_	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal/Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016											
	EQUIPMENT C		1/Ft.): 1/8" = 0 B = Bailer;	BP = Bladder i			96; 5/16" = 0. Submersible Pu		.006; 1/2 eristaltic Pun	t" = 0.010; np;	5/8" = 0.016 ther (Specify)
					SAMP	LING DA					
	BY (PRINT) / A Davis/MDM S		l: (SAMPLEH(S)	CIGNATUR	E(S):		SAMPLING INITIATED A	r:117.01	SAMPLIN ENDED	
PUMP OR		5.0		TUBING	one UDDI	-		-FILTERED: Y	N	FILTER S	ilZE:μm
	WELL (feet): CONTAMINATION		JMP Y !	MATERIAL C	TUBING	i ·-	eplaced)	on Equipment Ty DUPLICATE:		N	
SAM	PLE CONTAINS	ER SPECIFI			PRESERVA	ATION (includ	· · · · · · · · · · · · · · · · · · ·	INTEND	ED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL	VOLUME	PRESERVAT USED	IVE ADDE	OTAL VOL	FINAL pH	ANALYSIS A METHO		CODE	FLOW RATE (mL per minute)
MW-5	3	CG	_40 mL	HCL	AUUE	D NA FIELD (me) pri	BTEX/M	TBE	APP	300
								_			
											,
REMARKS	3:						ļ				
ORP = (399		100								
	L CODES:		er Glass; CG e; T = Teflon;			High Density F	Polyethylene;	LDPE = Low De	nsity Polyet	nylene; PP	= Polypropylene;
SAMPLIN	G EQUIPMENT	25,7791,574	APP = After (hrough) Perista	altic Pump:	B = Bailer	; BP = Blade Method (Tubing			Submersible or (Specify)	Pump;
LOTES: 4	71	-1					as 62-160 E /			. (Opcony)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: CO	ombs Oil					TE DOATION: 52	25 F Main S	St., Immokal	ee Fl		
WELL NO:				SAMPLE	: ID: MW-6					19/2017	
					PURG	ING DA	TA				
WELL VOL	R (inches): 4 LUME PURGE: t if applicable)	TUBIN DIAME 1 WELL VO	ETER (inches):	0.25 DEF	LL SCREEN PTH: 1.5 fee	INTERVAL	STATIC E TO WATE	DEPTH ER (feet): て・S WELL CAPACI	O	JRGE PUMP T R BAILER: 2	
EQUIPME	NT VOLUME P	URGE: 1 EQ	= (1 UIPMENT VOL	1 feet – = PUMP VOL	Z - 9 .UME + (TUE	O feet BING CAPACI	x 0.65	gallons/foot = JBING LENGTH)	1.29 + FLOW C	gallons ELL VOLUME	
(only fill ou	t if applicable)			= g:	allons + (galio	ons/foot X	feet)	+	gallons	= gallons
	IMP OR TUBIN WELL (feet):	G4.5		MP OR TUBING WELL (feet):	35.0	PURGIN INITIATE	IG ED AT: ((O)		(C)	TOTAL VO	LUME gallons): 2.20
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhoe/cm or (nS/cm	DISSOLVED OXYGEN (cirele units) ng/L or % saturation	TURBID (NTUs	s) (descri	
11:13	GU.1	1.40	-20	3.05	6.2	27.9	0.71	01.0	10.		u petrol
11:15	,uo	1.80	.20	3.05	6.2	27.9	0.71	0.09	8.2	- 1-	e. 52 el
11:17	-40_	2.20	.20	3.05	6.2	27.9	0-71	0.09	9.5) <u> </u>	6, ₂₂
TUBING IN	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder f	= 0.0014;	1/4" = 0.002		004; 3/8" = 0	5" = 1.02; .006; 1/	2" = 0.010;	12" = 5.88 5/8" = 0.016 Other (Specify)
Pondina	EGOIFMENT	,OUE3. I	a = Dallel,	BF = Diaudei F		LING DA		mp, rr=rc	nistanic ru	шр, 0 = 0	Aller (Specify)
	BY (PRINT) / A avis/MDM S		(SAMPLER(S)				SAMPLING INITIATED AT	r: lpa-	SAMPLII ENDED	NG AT: 11:21
PUMP OR DEPTH IN	TUBING WELL (feet):	5.0		TUBING MATERIAL C	ODE: HDPE			-FILTERED: Y on Equipment Typ	N		SIZE: µm
FIELD DEC	ONTAMINATIO	ON: PUI	MP Y <u>N</u>		TUBING	Y <u>N</u> (re	aplaced)	DUPLICATE:	Υ	<u>N</u>	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	R SPECIFIC MATERIAL CODE	ATION VOLUME	SAMPLE PRESERVAT USED	IVĖ 1	NTION (includ FOTAL VOL ED IN FIELD (i	FINAL	INTENDI ANALYSIS A METHO	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL, per minute)
MW-6	1	AG	250 mL	H2SQ4	ADDE	ין עששרו אוו שנ	ilie) pri	TRPH	1	APP	300
MW-6	1	AC	1000 22	42504	4			msling	0	499	300
									-+		
									$\neg \uparrow$		
REMARKS ORP = (_						•	•			
MATERIAL		AG = Amber S = Silicone;	Glass; CG = T = Tellon;	: Clear Glass; O = Other (S		ligh Density f	Polyethylene;	LDPE = Low De	nsity Polye	thylene; PF	= Polypropylene;
SAMPLING	EQUIPMENT	CODES:	APP = After (Ti	nrough) Perista	Itic Pump;	B = Bailer SM = Straw	BP = Blade Method (Tubing			c Submersible er (Specify)	Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: C	ombs Oil	_				TE CATION: 53	25 F. Main S	St., Immokal	ee Fl		
WELL NO				SAMPLE	E ID: MW-7		<u> </u>		DATE: 6/1	9/2017	
					PURC	ING DA	TA				
WELL DIAMETE	R (inches): 4	TUBIN	G TER (inches):		LL SCREEN PTH: 1.5 fee		STATIC (DEPTH ER (feet): 3.5		RGE PUMP T	
(only fill or	it if applicable)	1 WELL VO	LUME = (TO	TAL WELL DE	TH - STA	TIC DEPTH	TO WATER) X	WELL CAPACI	TY		
EQUIPME	NT VOLUME P	URGE: 1 EQ	= (1	1 feet -	3.50 LUME + (TUE	feet) x 0.65	gallons/foot = UBING LENGTH)	1.20 + FLOW C	gallons ELL VOLUME	
	it if applicable)				allons + (ons/foot X	feet)		gallons	
	JMP OR TUBIN WELL (feet):	⁶ 5.5	FINAL PU DEPTH IN	MP OR TUBING WELL (feet):	⁶ 5.5	. PURGIN	IG ED AT: 1 25	PURGING ENDED AT:	11:35	TOTAL VO PURGED (LUME gallons): 2- W
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhoc/cm	DISSOLVED OXYGEN (circle soits) mg/L or x saturation	TURBIDI (NTUs)	TY COLO	ODOR
11:31	1.20	1.20	.70	3.79	6.4	27.6	0.88	0.25	[7]	clea	er petrol
11.33	,40	1.00	,20	3.79	6.4	27.6	0.85	0-26	19	٠,	*
11:35	.40	2.00	.20	3.79	64	27.7	086	0.28	20	~	
			-	_		<u> </u>					
			_	1							
			+			<u> </u> 				_	
		100	- TV								
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016											
PURGING	EQUIPMENT C	ODES: £	B = Bailer;	BP = Bladder I	*		Submersible Pu	mp; PP = P6	ristaltic Pun	np; O = C	ther (Specify)
SAMPLED	BY (PRINT) / A	FEILIATION:	: 1	SAMPLER(S		LING DA	ATA	T		1	
	avis/MDM S			(I)	0			SAMPLING INITIATED AT	F: 11:35	SAMPLIN ENDED	NG AT: [1-36
PUMP OR DEPTH IN	TUBING (WELL (feet):	5.5		TUBING MATERIAL C	ODE: HDPE			-FILTERED: Y	<u>N</u> pe:	FILTER S	SIZE:μm
FIELD DE	CONTAMINATIO	ON: PUR	AP Y I		TUBING		eplaced)	DUPLICATE:	Υ	N	
	PLE CONTAINE		ATION		PRESERVA	` `		INTENDI ANALYSIS A		SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL D IN FIELD (mL) FINAL	METHO	D	CODE	(mL per minute)
MW-7	1	AG	250 mL	H2SO4				TRPH		APP	COC
					_		_				
								1	-		<u> </u>
								1			
REMARKS											
MATERIAL	075 L CODES:	AG = Amber	20.5%	= Clear Glass;		ligh Density l	Polyethylene;	LDPE = Low De	nsity Polyeti	nylene; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES:		O = Other (S hrough) Perista	altic Pump;	B = Bailer	; BP = Blado	ler Pump; ES		Submersible	Pump;
L.	The share			se Flow Perista	1.1		Method (Tubing		O = Othe	r (Specify)	

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: CI	ombs Oil							OCATION:	525 F	E. Main S	it., Immokal	ee. Fl	_				
WELL NO:					SA	MPLE	io: MW-					DATE:		2017			
	_						PUR	GING [ATA	<u> </u>							
WELL	R (inches): 4		TUBING	i 'ER (inches):	ი 25			I INTERVA		STATIC D	EPTH R (feet): 3. \	,	PURG OR BA	E PUMP	YPE		
WELL VO	LUME PURGE:	1 W	ELL VOL	UME = (TOT	AL WEL	L DEP	TH - ST	ATIC DEPT	H TO W		WELL CAPACI		0	11000111			
	t if applicable)				1 feet		3.1		eet) X	. 0.65 g	gallons/foot =		215	gallons			
	NT VOLUME PI it if applicable)	URGE	E: 1 EQU	IPMENT VOL	. = PUM						BING LENGTH)		V CELL				
INITIAL PL	JMP OR TUBIN	G ∠		FINAL PU	# ⁄/P OR T		lions + (PUB	allons/f		feet)		1-	gallons TOTAL VO	TE E HAIF	:	llons
DEPTH IN	WELL (feet):	T -	0.5	DEPTH IN			5.0	INITI	ATED A	_{IT:} (1:40	ENDED AT:	11.2	(1	PURGED	gallor)	is) di	20
TIME	VOLUME PURGED (gallons)	V(OLUME URGED gallons)	PURGE RATE (gpm)	DEF T(WA	O FEA et)	pH (standard units)	TEMP (°C)	μ Ω	COND. ircle units) mbes/cm ir (mS/cm)	OXYGEN (pircle poits) (mg/L er % saturation	(N	BIDITY TUs)	COL (desci	ibe)	OD (desc	
11:47	140	1.0		.20	3		6.0	28.1		30	0,40	_	<u>[</u>	Clec		200	
11:49	.40		<u>,೪೦</u> .ಬ.	20	3.	<u>पा</u> पा	0.0	78.5		90	0.47	+	1.2	\ <u></u>	6 g		-,
11.2	.40	1	,, 50	1.20	٠,	-11	60	20.0	<u> </u>	-	0,40	 '	1.0	2.5			
					-							ļ		-			
		-			-				-			\vdash		+-	_		
	-			 	-												
WELL CAL	PACITY (Gallon	e Par	Footh: 0	75" - 0.02	1" - N	U4·	1 25" - 0 1	ne. 2" -	Δ 16·	3" = 0 37·	4" = 0.65·	5" - 10	2 6'	' = 1.47	12"	- 5.88	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)																	
PUHGING	EQUIPMENT	ODE	<u>5: B</u>	= Bailer;	BP = 618	caer P		PLING			np; PP = P6	enstaitic	Pump;	0=	Jiner	Specity	<u> </u>
	BY (PRINT) / A				SAMPL	ERIST	SIGNATUE)		SAMPLING INITIATED A	r. Idi	51	SAMPLI	NG AT: 1	1:5	7.
PUMP OR	TUBING	5.			TUBING				<u>'</u>		FILTERED: Y	N	21	FILTER			
	WELL (feet): CONTAMINATION	_	PUMI	P Y <u>N</u>		IAL CC	DE: HDF TUBING		l (replac		DUPLICATE:		Y	N			\dashv
	PLE CONTAINE					MPLE		'ATION (inc			INTEND		1	MPLING	SA	MPLE P	UMP
SAMPLE ID CODE	# CONTAINERS	MA	TERIAL	VOLUME	PRESE		VE	TOTAL VO	L	FINAL	ANALYSIS A METHO	ND/OR	EQL	JIPMENT CODE	F	LOW R	ATE
MW-8	3		CG	40 mL		CL			(BTEX/M	ГВЕ		APP	~	500	
													-		_		
										<u> </u>			-		-		
													+		-		\neg
REMARKS	·																
ORP = (~	AG =	= Amber (Blass; CG =	: Clear G	lass:	HDPE =	High Dens	ity Polv	ethylene:	LDPE = Low De	nsity Po	ivethyle	ene; P	P = Po	lypropy	ene:
		S = 5	Silicone;	T = Teflon;	0 = 0	ther (S	pecify)							712			
SAMPLIN	G EQUIPMENT	COD		PP = After (T FPP = Rever:				8 = Ba SM = St		BP = Bladd thod (Tubing	er Pump; Es Gravity Drain);			ibmersible Specify)	Pump); 	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: C	ombs Oil				sr	-	P5 F Main 9	St., Immokal	ee Fl			
	: MW-28			SAMPLE	ID: MW-2		.o E. Maiii (1	DATE: 6/1	9/2017		
				l	PURG	ING DA	TA					
WELL	R (inches): 2	TUBIN	G TEA (inches):		LL SCREEN		STATIC	DEPTH ER (feet): 3.1	PUI	RGE PUMP T	YPE	
WELL VO	LUME PURGE:	1 WELL VO	LUME = (TOT	AL WELL DEP	TH - STA	TIC DEPTH 1		WELL CAPACI		DAILETT. 44		
	it if applicable) NT VOLUME P	IIRGE: 1 FOI	= (1	2 feet –	3.47	feet	x 0.16	gallons/foot = UBING LENGTH)	1-36	gallons		
	it if applicable)	5110E. 1 Eq.)		allons + (ons/foot X	feet)		gallons	= g	allons
	JMP OR TUBIN WELL (feet):	^G 5.0		IP OR TUBINO WELL (feet):	5.5	PURGIN INITIATE	IG ED AT: 5\u	PURGING ENDED AT:	12:07	TOTAL VOI PURGED (UME pallons): 2	. 20
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or mS/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBIDI (NTUs)	LA COFO	R O	OOR scribe)
12.03	1.40	1.40	-70	3.61	6.3	27.9	0.51	0.30	20	clea	5 1	04
12:05	OP.	1.80	.20	3.61	6.3	27.9	0.51	0.32	19	Ç-	L. La	<u>~</u>
12:07	04.	2.20	.20	3.61	6.3	27.9	0.51	0.35	20	-,-		8-1
		<u> </u>										
												Ω
												\dashv
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016												
	TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)											
SAMPLED	BY (PRINT) / A	FEILIATION:		SAMPLER(6)		LING DA	ATA					
	avis/MDM S		k		8	10).		SAMPLING INITIATED AT	12:07	SAMPLIN ENDED A	it: /S:0	g
PUMP OR DEPTH IN	TUBING WELL (feet):	5.5		MATERIAL CO	ODE: HDPE			FILTERED: Y on Equipment Ty	N De:	FILTER S	IZE:	μm
	CONTAMINATION	ON: PUL	IP Y N		TUBING		aplaced)	DUPLICATE:	Y	<u>N</u>		
1	PLE CONTAINE		ATION			TION (includ		INTENDI ANALYSIS A		SAMPLING QUIPMENT	SAMPLE FLOW F	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL D IN FIELD (mL) FINAL	METHO	D	CODE	(mL per n	
MW-28	1	AG	250 mL	H2SO4				TRPI		APP	300	
											-	
-												
REMARKS	5: 082											
1	L CODES:	AG = Amber	Glass; CG =	: Clear Glass;	HDPE = H	ligh Density f	olyethylene;	LDPE = Low De	nsity Polyeth	rylene; PP	= Polyprop	ylene;
SAMDI INI	G EQUIPMENT	· · · · · · · · · · · · · · · · · · ·	T = Teflon;	O = Other (S hrough) Perista		B = Bailer	BP = Blade	fer Pump. EQ	P = Flectric	Submersible	Shimu.	
NOTES: 1	- Edolement	F	RFPP = Revers	e Flow Perista	ltic Pump;	SM = Straw	Method (Tubing	Gravity Drain);		r (Specify)	атр,	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

FT 1000 General Field Testing and Measurement

	Fo	rm FD 900	0-8: FIELI	D INSTRUMEN	NT CALI	BRATION R	ECORDS	
INSTRUI	VIENT (MAKE/MOI	DEL#)	<u>/SI 550/Lamoti</u>	e 2020/I	Hanna INS	STRUMENT	# 2/2/2
PARAME	ETER:							
☐ TE	MPERATI	JRE 🗵	CONDUCT	VITY S	ALINITY	⊠ pH	☐ ORP	
⊠ TU	RBIDITY		RESIDUAL	CI 🗵 D)	☐ OTH	ER	
STANDA values and	RDS: [Specify the ty the standard	/pe(s) of stan Is were prepa	dards used for ca red or purchasedj	libration ti	he origin of the :	standards, the	standard
Stand	ard A <u>tu</u>	rbidity-10.0	exp. :c	onductivity-1,00	0 ехр.	рН-7.00 ехр	DO-100	%-DI water
Stand	ard B <u>tur</u>	bidity-1.0 ex	(D. : CO	nductivity-500 e	XD. J	pH-4.00 exp		
Stand	ard C					_		
DATE (yy/mm/dd)	TIME (Scenin)	STD (A, B, C)	STD	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
7/6/19	10:40	A/B	(10.0)1.0 (Unsidety	10.0	0	N		20
1/6/19	10:42	AVB	1,000/500	1000	0	N		0
7/6/19	(0:44	AB	(7,00/4.00 pH	7.0	5	N		
17/10/19	[O:46	А	100% DO	10000	0	N		(1)
17/6/19	12:10	(A/B	10.0/).0	0.01	0	N		
7/6/19	12:12	(A)B	1,000/500 Conduct.	999	1	N		(7)
17/12/19	(2:14	AB	7.00/2.00 pH	7.0	Ö	N	(
7/10/19	(2:16	A	100% DO	98%	2	N		(0)
				 				
		301						
					1981			
				· · ·		in	n L	
				-				
		-		<u> </u>		1		

Revision Date: February 1, 2004

91 Location 625 E. Main St., Improved larDate (a) 19/17 Project / Client Gmos O. I 20815 FAC# 118839176 7:30- Daniel Davis less mon takeland office in MOM'S Nissan Nizop en oute hist. 7100 miles. 10 25- Arrived on site TOOK WE Round: MW-5:3.10 MW-6:2.90 MW-7:3.50 Mu-29:310 mu-28:347 10.40 Checked calibration of makers. See cel. log. 10:50 - Books purging must 11:02- Sampled MW.5. 11:00- Began grang Mule. -11:21- Sempled mid 6. 11:25 - Began purging Mu-7. 11:32-Sampled mw-7. 11:40 - Began purging Mu-8. 11:52-5ampled mw-8. 150-Began purging nw. 28. 12:08 - 50 mpled MW-78. 12:10- Charled calibration of mefers see calling. 12:30-All Samples packed inice. Parked up & left six en coute to MDM Laxeland office. 7100 miles

Rete in the Rain

Site 28 – Davis Oil Company (also known as Sunoco Gas Station, Gator Food Store, and Oleum Corp)

16:02 Applied Science & Engineering

(FAX)813 288 1550

Department of Environmental Protection

DEF Form: <u>62-761.900(1)</u> Form Title: Discharge Report Form Effective Date: January 2017 Incorporated in Rule 52-761.405, F.A.C.

DISCHARGE REPORT FORM

Complete all applicable blanks, and submit of			oils, surfece water, or groundwater to the County
	via emeli	1/24/18	
Facility ID Number (If Registered): 11/85181	121 Date of Form Cor		Date of Discovery: 12/12/2017
Facility Name: Gator Foods Inc		County: 11	
Facility (Property) Owner: Cecil R. Howell			Number: 863-673-9330
Owner Mailing Address: PO Box 610, Immok	ralee, FL 34143		
Location of Discharge (Facility Street Address	s): 730 E Main Street, Immokalee, FL		Lat/Long:
Date of receipt of any test or analytical result	its confirming a discharge: 12/12/2018	Estimated r	rumber of gallons discharged: Unknown
	Groundwater Shoreline	Soil water (water body name) Other (specify)	
	Results or receipt of results of and Spill or vehicle overfill > 25 gallons	to a pervious surface	Stained sails Other (expiain in comments)
	lscharge: (Check all that apply, see rule H Closure/Closure sempling assess Soll analytical results	nent	ons for this form) Surface water analytical results Other (specify)
Type of regulated substance discharged: (Ci Gasoline Diesel Heating oil Kerosene Aviation gas Hazardous substance (USTs) —write na	Jet fuel Used/waste oil New motor/lube oil Pesticide Grøde 5 & 6 residual oils		Mineral acids (ASTs) Ammonia compound Chlorine compound Biofuel blends Unknown Other (specify)
Discharge originated from at (Check all that Tank Plping Spill bucket Oispensur Plping sump Dispenser sump	apply) Other secondary containment Fitting or pipe connection Valve Tank truck Vehicle or customer vehicle Aircraft		Railroad tankcar Barge, tanker ship or other vesse! Pipeline Drum Unknown Other (specify)
Ovarfill Mater Corrosion Impro	rial fallure (crack, split, etc.) rial incompatibility pper installation connection	Collision Vehicle accident Fire/explosion Vendalism OVA readings during closure ass	Weather Human error Unknown Other (specify) Damaged Goots essment.
Comments:			
Agencies notified (as applicable):			
Fire Department County Prog	gram Co'ller Distr		te Watch Office National Response Center 800-320-0519 800-424-8802
To the best of my knowledge and belief, sti	information submitted on this form is		_
Cecil Howell, property owner		(ecil Hou	ell
Printed Name of Owner, Operator or Author	rized Representative		or or Authorized Representative

Incident Notification Form

DEP Form # 62-761.900(6)	34
Form Title Incident Notification Form	
Effective Date: <u>July 13, 1998</u>	

PLEASE PRINT OR TYPE

Instructions are on the reverse side. Please complete all applicable blanks

. Facility ID Number (if registered): 118518	2. Date of form	n completion: <u>7/21/17</u>	
. General information			
Facility name: Gator Foods, Inc			
Facility Owner or Operator: Gator Foods.	Inc.		
Contact Person: Brian Davis	Telephone number: (239)5654477	County: Collier
Facility mailing address: 726 E Main Stre		-	
Location of incident (facility street address):	726 E Main Street, Immokalee	. FL 34142	
Latitude and Longitude of incident (If known)		
Date of Discovery of incident: 8/23/16	month/day/y	ear	
Monitoring method that indicates a possible			
Liquid detector (automatic or manual)	Groundwater samples	Closure	
Vapor detector (automatic or manual)	Monitoring wells	Inventory control	
Tightness test	Internal inspection	Statistical Inventor	y Reconciliation
Pressure test	Odors in the vicinity	[] Groundwater analy	
Breach of integrity test	Automatic tank gauging	Soil analytical tests	
/ Visual observation	Manual tank gauging	i	•
,	3 3 3	Other	
Type of regulated substance stored in the s	torage system: (check one)	•	
/] Diesel	Used\waste oil	[] Nev	v/lube oil
/] Gasoline	Aviation gas	[] Ker	osene
Heating oil	Jet fuel	[] Oth	er
Hazardous substance - includes CERCLA s	substances, pesticides, ammonia, chlo		
(write in name or Chemical Abstract Service	ce (CAS) number)		
Incident involves or originated from a: (che	eck all that apply)		
Tank Unusual operating of Piping sump Release detection ed Loss of >100 gallons to an impervious sur Cause of the incident, if known: (check all the property of the incident) Spill Faulty Probe or sensor Human	quipment [] Secondary contain rface other than secondary containment that apply) (<25 gallons) [] The	ment system [] Othen nt [] Loss of >50	
Actions taken in response to the incident: <u>F</u>	Replacement to occur in Augus	et 2017	
. Comments:			
l. Agencies notified (as applicable):		117	
Fire Department. 2. To the best of my knowledge and belief, a	leasaence (rm is true, accurate, ar	district/person) d complete. afor or Authorized Representative.

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

November 21, 2022

Sent via email to: davisoilco@gmail.com

Mr. Donnie Davis Davis Oil Company Inc 726 E Main Street Immokalee, FL 34142

Subject: <u>Site Rehabilitation Completion Order</u>

Davis Oil Company Inc 726 E Main Street

Immokalee, Collier County FDEP Facility ID# 118518121

Discharge Dates: March 17, 1994 (PLRIP), January 29, 2018 (Non-program)

Discharge Score: 11

Dear Mr. Davis:

The Petroleum Restoration Program (PRP) has reviewed the Source Removal Report (SRR) and No Further Action Proposal (NFAP) dated and received August 29, 2022, the Supplemental Site Assessment Report (SSAR) dated and received March 10, 2022, and the Addendum to the SSAR dated and received May 2, 2022, for the petroleum product discharges referenced above. All the documents submitted to date are adequate to meet the site assessment requirements of Rule 62-780.600, Florida Administrative Code (F.A.C.). In addition, documentation submitted with the SSARs/SRR/NFAP confirms that criteria set forth in Subsection 62-780.680(1), F.A.C., have been met. Please refer to the attached maps of the source property and analytical summary tables, Exhibits A and B respectively and hereby incorporated by reference. The SSARs/SRR/NFAP are hereby incorporated by reference in this Site Rehabilitation Completion Order (Order). Therefore, you are released from any further obligation to conduct site rehabilitation at the facility for petroleum product contamination associated with the discharges referenced above, except as set forth below.

- (1) In the event concentrations of petroleum products' contaminants of concern increase above the levels approved in this Order, or if a subsequent discharge of petroleum or petroleum product occurs at the facility, the Florida Department of Environmental Protection (Department) may require site rehabilitation to reduce concentrations of petroleum products' contaminants of concern to the levels approved in the SSARs/SRR/NFAP or otherwise allowed by Chapter 62-780, F.A.C.
- (2) Additionally, you are required to properly plug and abandon all monitoring wells, injection wells, extraction wells, and sparge wells within 60 days of receipt of this Order unless these wells are otherwise required for compliance with a local ordinance or another cleanup. The wells must be

Mr. Donnie Davis FDEP Facility ID# 118518121 Page 2 November 21, 2022

plugged and abandoned in accordance with the requirements of Subsection 62-532.500(5), F.A.C. A Well Plugging Report shall be submitted within 30 days of well plugging. Other State, county or city requirements for well abandonment may also apply.

NOTICE OF RIGHTS

This action is final and effective on the date filed with the Clerk of the Department unless a petition for an administrative hearing is timely filed under Sections 120.569 and 120.57, F.S., before the deadline for filing a petition. On the filing of a timely and sufficient petition, this action will not be final and effective until a subsequent order of the Department. Because the administrative hearing process is designed to formulate final agency action, the subsequent order may modify or take a different position than this action.

Petition for Administrative Hearing

A person whose substantial interests are affected by the Department's action may petition for an administrative proceeding (hearing) under Sections 120.569 and 120.57, F.S. Pursuant to Rules 28-106.201 and 28-106.301, F.A.C., a petition for an administrative hearing must contain the following information:

- (a) The name and address of each agency affected and each agency's file or identification number, if known;
- (b) The name, address, any e-mail address, any facsimile number, and telephone number of the petitioner, if the petitioner is not represented by an attorney or a qualified representative; the name, address, and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination;
- (c) A statement of when and how the petitioner received notice of the agency decision;
- (d) A statement of all disputed issues of material fact. If there are none, the petition must so indicate;
- (e) A concise statement of the ultimate facts alleged, including the specific facts that the petitioner contends warrant reversal or modification of the agency's proposed action;
- (f) A statement of the specific rules or statutes that the petitioner contends require reversal or modification of the agency's proposed action, including an explanation of how the alleged facts relate to the specific rules or statutes; and
- (g) A statement of the relief sought by the petitioner, stating precisely the action that the petitioner wishes the agency to take with respect to the agency's proposed action.

The petition must be filed (received by the Clerk) in the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000, or via electronic correspondence at Agency_Clerk@FloridaDEP.gov. Also, a copy of the petition shall be mailed to the addressee at the address indicated above at the time of filing.

Time Period for Filing a Petition

In accordance with Rule 62-110.106(3), F.A.C., petitions for an administrative hearing by the addressee must be filed within 21 days of receipt of this written notice. Petitions filed by any persons other than the addressee must be filed within 21 days of publication of the notice or within 21 days of receipt of the written notice, whichever occurs first. You cannot justifiably rely on the finality of this decision unless notice of this decision and the right of substantially affected persons to challenge this decision has been

Mr. Donnie Davis FDEP Facility ID# 118518121 Page 3 November 21, 2022

duly published or otherwise provided to all persons substantially affected by the decision. While you are not required to publish notice of this action, you may elect to do so pursuant Rule 62-110.106(10)(a).

The failure to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57, F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will be only at the discretion of the presiding officer upon the filing of a motion in compliance with Rule 28-106.205, F.A.C. If you do not publish notice of this action, this waiver may not apply to persons who have not received a clear point of entry.

Extension of Time

Under Rule 62-110.106(4), F.A.C., a person whose substantial interests are affected by the Department's action may also request an extension of time to file a petition for an administrative hearing. The Department may, for good cause shown, grant the request for an extension of time. Requests for extension of time must be filed with the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000, or via electronic correspondence at Agency_Clerk@FloridaDEP.gov, before the deadline for filing a petition for an administrative hearing. A timely request for extension of time shall toll the running of the time period for filing a petition until the request is acted upon.

Mediation

Mediation is not available in this proceeding.

Judicial Review

Once this decision becomes final, any party to this action has the right to seek judicial review pursuant to Section 120.68, F.S., by filing a Notice of Appeal pursuant to Florida Rules of Appellate Procedure 9.110 and 9.190 with the Clerk of the Department in the Office of General Counsel (Station #35, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000) and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice must be filed within 30 days from the date this action is filed with the Clerk of the Department.

Questions

Any questions regarding the PRP's review of the SSARs/SRR/NFAP should be directed to Jessica Tromer at 813-684-4400 ext. 4836. Questions regarding legal issues should be referred to the Department's Office of General Counsel at 850-245-2242. Contact with any of the above does not constitute a petition for an administrative hearing or a request for an extension of time to file a petition for an administrative hearing.

The FDEP Facility Number for this facility is 118518121. Please use this identification on all future correspondence with the Department.

Mr. Donnie Davis FDEP Facility ID# 118518121 Page 4 November 21, 2022

EXECUTION AND CLERKING

Executed in Tallahassee, Florida.
STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Natasha Lampkin
Program Administrator
Petroleum Restoration Program

Attachment(s):

A: map(s) of the source property; B: updated analytical summary tables

CERTIFICATE OF SERVICE

The undersigned duly designated deputy clerk hereby certifies that this document and all attachments were sent on the filing date below to the following listed persons:

ec: Gary Maier, FDEP South District Office – gary.maier@floridadep.gov
Jessica Tromer, FDEP-PRP (PRS5) – jtromer@northstar.com
Alfie Nazario, FDEP-PRP (PRS5) – anazario@northstar.com
Cayla Yerg, FDEP-PRP (PRS5) – cyerg@northstar.com
John McKeague, Universal Solutions, Inc., jmckeague@usienvironmental.com
South Florida Water Management District – wells@sfwmd.gov
Petroleum Restoration Program – prp.orders@floridadep.gov
File

FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to Sectio	n 120.52, F. S.,	with the designated	Department Cler	k, receipt of
which is hereby acknowledged.				

Clerk	Date

FLORIDA DEPARTMENT OF Environmental Protection

Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400

MEMORANDUM

FROM: Natasha Lampkin, Program Administrator, Petroleum Restoration

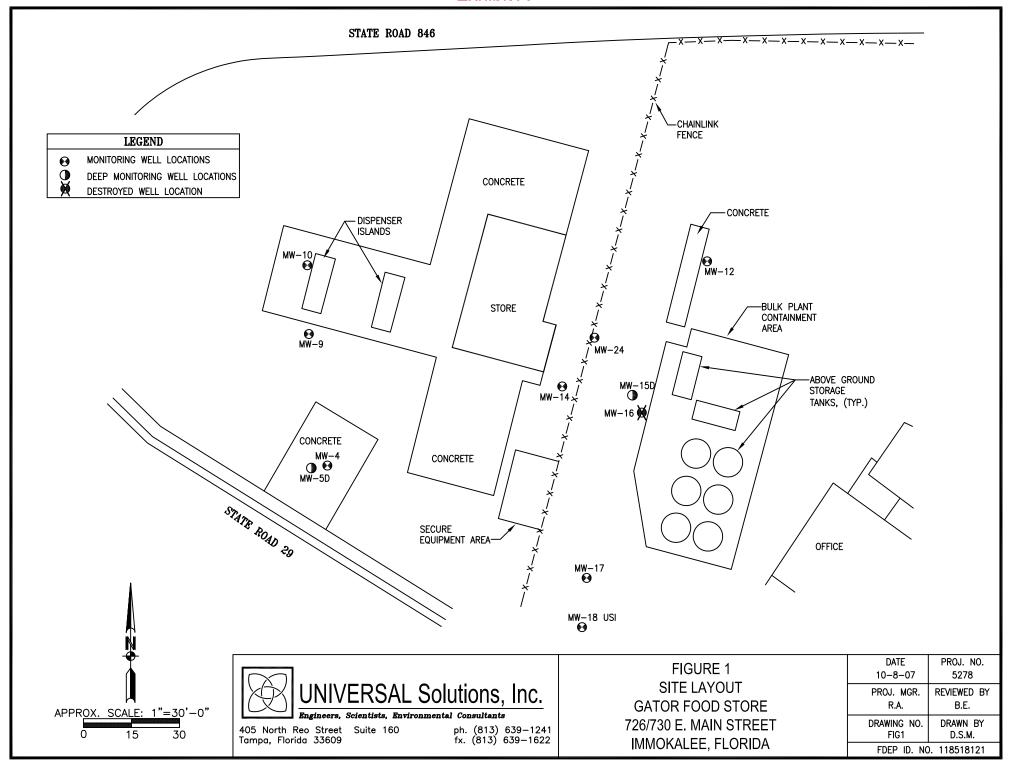
Program Natasha Lampkin Digitally signed by Natasha Lampkin Date: 2022.11.18 19:59:55 -05'00'

SUBJECT: Delegations of Authority

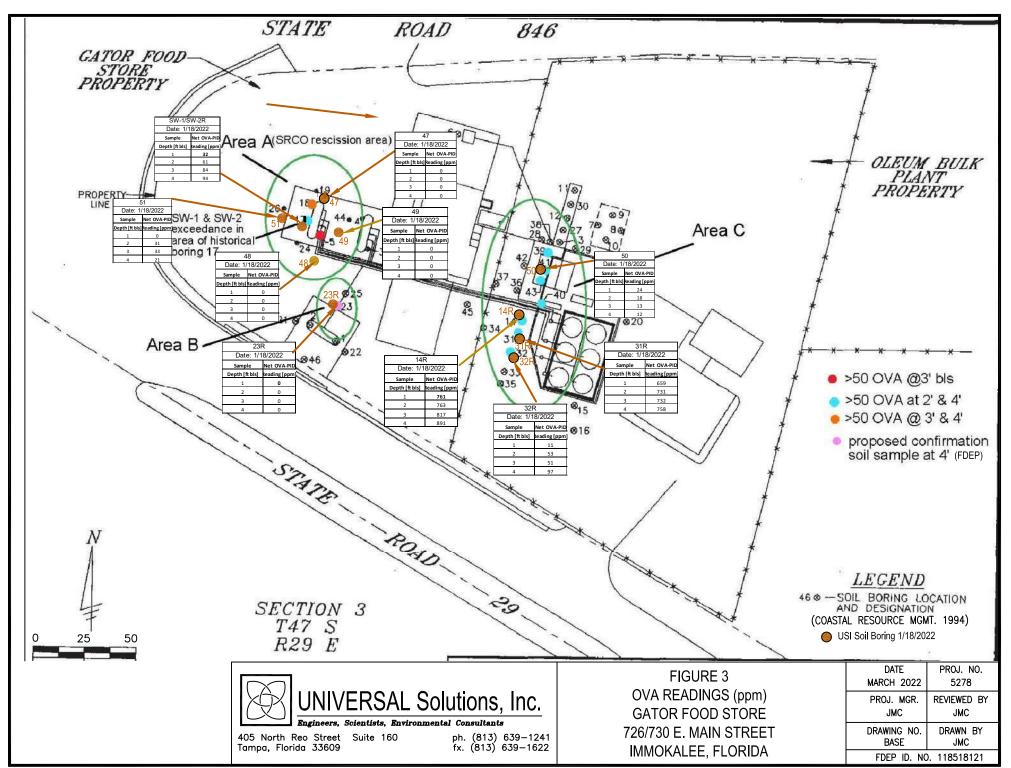
DATE: 11/18/2022

In accordance with DEP Directive 100, the following referenced delegation(s) are hereby delegated to the delegate(s) listed.

Delegation Reference	Delegate(s)
DEL-16 Permitting Authority:	Susan Fields, Environmental
For their respective divisions, take agency	Administrator, Petroleum
action on all orders, certifications, agreements,	Restoration Program
permits, general permits, generic permits,	_
exemptions, and exception applications,	
including modifications and extensions.	


Limitations to the delegation(s): Limited to the following Approvals for Petroleum Cleanup Sites: Site Rehabilitation Completion Orders, Conditional Site Rehabilitation Completion Orders, Low Scored Site Initiative No Further Action Orders, Underground Injection Control Approval Orders, Remedial Action Plan Approval Orders, Interim Source Removal Proposal Approval Order and Monitoring Plan Approvals only and does not include any other agreements, orders, certifications, permits, exemptions, exceptions, modifications or extensions.

The exercise of these delegations shall be consistent with all applicable rules, statutes, administrative directives, policies and procedures. These delegations should be exercised with a high degree of judgment and caution. If there is any doubt whether exercising this delegated authority is inconsistent with any of the above limitations, the person whom the authority is delegated shall not exercise the authority without first consulting Natasha Lampkin, Program Administrator, Petroleum Restoration Program.


This delegation of authority revokes, replaces, and supersedes all previous delegations within the Petroleum Restoration Program.

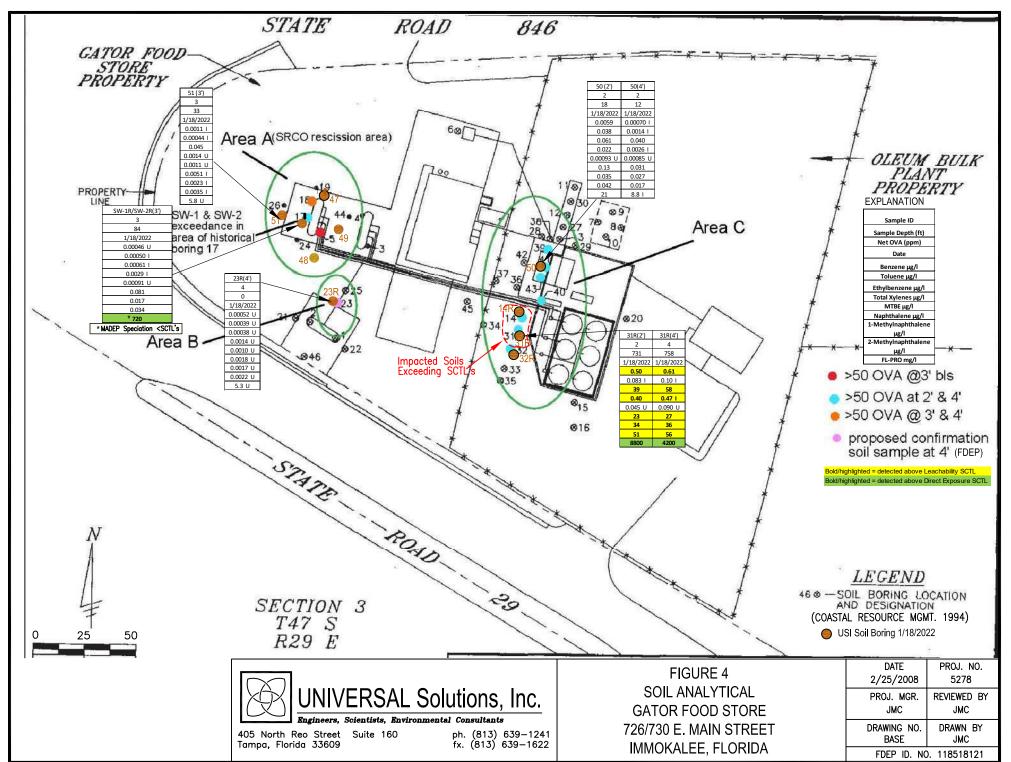

This delegation is temporary and will be in effect from November 21, 2022 through November 22, 2022.

Exhibit A

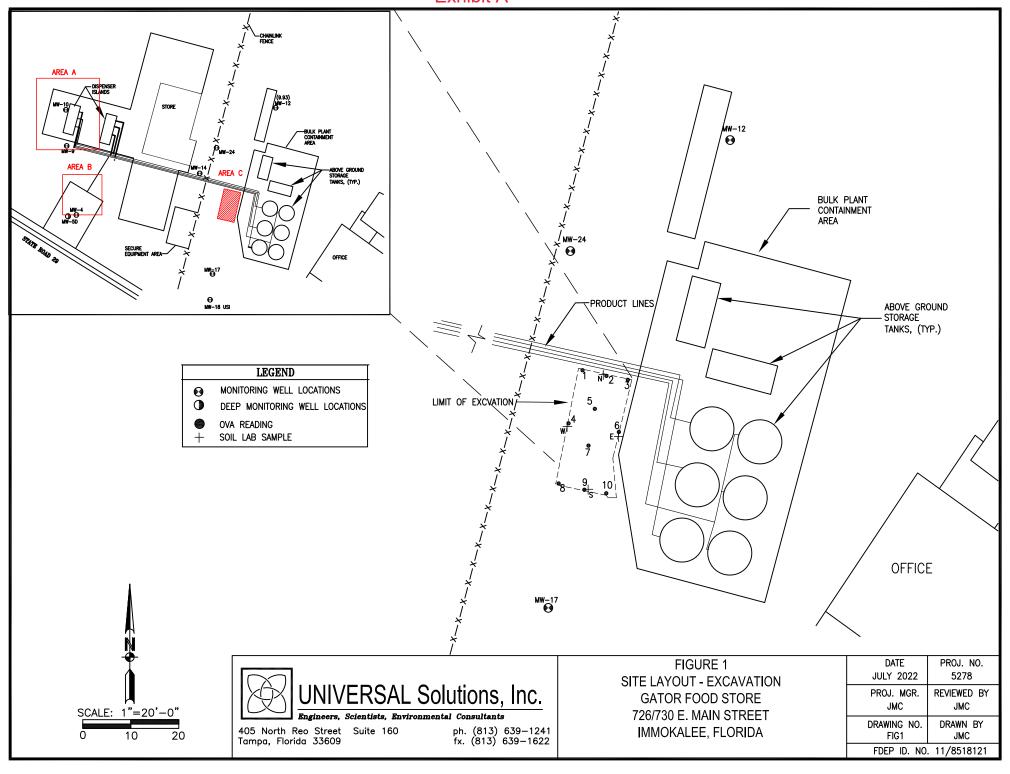


Exhibit A

Exhibit A

TABLE 3: SOIL ANALYTICAL RESULTS

Facility Name: Gator Foods Davis Oil Company INC

Facility Address: 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121 Universal Project No. 5278

		Sample			Danasa	_	Ethylbenzen			-		2- Methylnaphtha	
	Location Leachability	Depth (ft)	Net OVA (ppm)	Date	Benzene 0.007	Toluene 0.5	e 0.6	Xylenes 0.2	0.09	ne 1.2	thalene 3.1	lene 8.5	FL-PRO 340
	Direct Exp. Res.				1.2	7500	1500	130	4400	55	200	210	460
II.	✓ SS-1	2	0	11/14/2017	0.00038 U	0.00028 U	0.00022 U	0.00032 U	0.00068 U	0.0026 U	0.0019 U	0.0024 U	7.7 U
	SS-2 ¹	3	1283	11/14/2017	0.020 U	0.014 U	0.42	0.064 I	0.035 U	13	27	36	2700
Area A	SS-3	2	0	11/14/2017	0.00050 U	0.00036 U	0.00029 U	0.00014 U	0.00088 U	0.010 U	0.082 U	0.010 U	120
	SW-1 ²	4	366	11/14/2017	0.0020 U	0.016 U	0.79	0.065 I	0.038 U	0.014	0.027 I	0.030 I	5100
	SW-2 ²	4	SB-BOTTOM	11/14/2017	0.021 U	0.015 U	0.012 U	0.017 U	0.037 U	11	25	29	5100
Area B -	—— 23R(4')	4	0	1/18/2022	0.00052 U	0.00039 U	0.00038 U	0.0014 U	0.0010 U	0.0018 U	0.0017 U	0.0022 U	5.3 U
	✓31R(2') **	2	731	1/18/2022	0.50	0.083 I	39	0.40	0.045 U	23	34	51	8800
	31R(4')**	4	758	1/18/2022	0.61	0.10	58	0.47 I	0.090 U	27	36	56	4200
Area C <	50 (2')	2	18	1/18/2022	0.0059	0.038	0.061	0.022	0.00093 U	0.13	0.035	0.042	21
	50(4')	2	12	1/18/2022	0.00070 I	0.0014 I	0.040	0.0026 I	0.00085 U	0.031	0.027	0.017	8.8 I
Area A	51 (3')	3	33	1/18/2022	0.0011 I	0.00044 I	0.045	0.0014 U	0.0011 U	0.0051 I	0.0023 I	0.0035 I	5.8 U
	SW-1R/SW-2R(3')	3	84	1/18/2022	0.00046 U	0.00050 I	0.00061 I	0.0029 1	0.00091 U	0.081	0.017	0.034	720*

NOTES:

Total BTEX = sum of Benzene, Toluene, Ethylbenzene, Total Xylenes,

I = reported value in between laboratory limit of detection (LOD) and laboratory limit of quantitation (LOQ)

U= indicates that a specific compound was analyzed for but not detected. The reported value shall be the laboratory limit of detection.

NS = not sampled for particular consituent(s).

all constituents shown in mg/kg unless otherwise noted

Soil Samples SS-1 through SW-2 Collected at Dispenser Closure Assessment (2017-See Appendix A)

Concentration exceeds SCTLs for Leachability
Concentration exceeds SCTLs for Direct Exposure

Bold/highlighted = detected above Leachability SCTL

Bold/highlighted = detected above Direct Exposure SCTL

- * MADEP Speciation <SCTLs
- ** Soil Excavated
- 1 Confirmation sample collected @ 51(3')
- 2 Confirmation sample collected @ SW-1R/SW-2R(3')

TABLE 4: SOIL ANALYTICAL RESULTS

J٦

Facility Name: Gater Foods Davis Oil Company INC Facility Address: 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121 Universal Project No. 5278

all constituents shown in mg/kg unless otherwise noted

Location	Sample Depth (ft)	Net OVA (ppm)	Date	Acenapht hene	Acenapht hylene	Anthracene	Benz(a)Anth racene	Benzo(a)p yrene	Benzo(b)fluor anthene	Benzo(g,h,i)p erylene		Chrysene	Dibenz(a, h)Anthrac ene	Fluoranth ene	Fluorene	Indeno(1,2,3- cd)pyrene	Phenanthrene	Pyrene
Leachability				2.1	27	2500	0.8	8	2.4	32000	24	77	0.7	1200	160	6.6	250	880
Direct Exp. Res.				2400	1800	21000	NA	0.1	NA	2500	NA	NA	NA	3200	2600	NA	2200	2400
SS-1	2	0	11/14/2017	0.022 U	0.0025 U	0.0023 U	0.0038 U	0.0021 U	0.0026 U	0.0023 U	0.0027 U	0.0037 U	0.0030 U	0.0031 U	0.0024 U	0.0027 U	0.0026 U	0.0036 U
SS-2	3	1283	11/14/2017	1.7	0.31	0.36	0.55	0.021 I	0.014 l	0.36	0.011 U	0.036	0.012 U	0.2	3.6	0.012 l	3.5	1.2
SS-3	2	0	11/14/2017	0.0094 U	0.011 U	0.0099 U	0.016 U	0.0089 U	0.011 U	0.0099 U	0.012 U	0.016 U	0.013 U	0.013 U	0.010 U	0.012 U	0.11 U	0.016 U
SW-1	4	366	11/14/2017	0.015 I	0.051	0.086	0.016 U	0.027 I	0.013 I	0.086	0.012 U	0.016 U	0.013 U	0.044	0.011 I	0.024 I	0.083	0.70
SW-2	4	SB-BOTTOM	11/14/2017	1.9	0.38	0.47	0.048	0.020 I	0.013 I	0.47	0.011 U	0.031 I	0.012 U	0.24	4.4	0.013 l	4.3	1.1
23R(4')	4	0	1/18/2022	0.0016 U	0.0019 U	0.0027 U	0.0021 U	0.0021 I	0.0033 I	0.0021 U	0.0025 U	0.0031 U	0.0018 U	0.0046 I	0.0023 U	0.0025 U	0.0023 U	0.0034 I
31R(2')	2	731	1/18/2022	2.6	0.0018 U	1.1	0.063	0.014	0.018	0.014	0.0042 I	0.065	0.0026 I	0.31	6.6	0.0097	11	1.1
31R(4')	4	758	1/18/2022	3.2	0.0035 U	1.4	0.063	0.014 I	0.017	0.014 I	0.0047 U	0.058	0.0033 U	0.39	5.5	0.0094 I	8.0	1.2
50 (2')	2	18	1/18/2022	0.0015 U	0.0018 U	0.0025 U	0.0020 U	0.0019 I	0.0033 I	0.0019 U	0.0023 U	0.0029 U	0.0016 U	0.0046 I	0.0021 U	0.0023 U	0.0021 U	0.0035 I
50(4')	2	12	1/18/2022	0.0023 I	0.0018 U	0.0025 U	0.0020 U	0.0017 U	0.0016 U	0.0019 U	0.0024 U	0.0030 U	0.0017 U	0.0028 U	0.0022 U	0.0024 U	0.0022 U	0.0024 U
51 (3')	3	33	1/18/2022	0.0018 U	0.0021 U	0.0030 U	0.0023 U	0.0020 U	0.0019 U	0.0023 U	0.0028 U	0.0035 U	0.0020 U	0.0033 U	0.0025 U	0.0028 U	0.0025 U	0.0028 U
SW-1R/SW-2R(3')	3	84	1/18/2022	0.056	0.0018 U	0.020	0.0047 I	0.0017 U	0.0020 I	0.0019 U	0.0023 U	0.0081 I	0.0017 U	0.036	0.088	0.0024 U	0.0021 U	0.29

soil removed

NOTES:

I = reported value is in between laboratory limit of detection (LOD) and laboratory limit of quantitation (LOQ)

U= indicates that a specific compound was analyzed for but not detected. The reported value shall be the laboratory limit of detection.

NS = not sampled for particular consituent(s).

NA = not applicable

NC = not calculated

all constituents shown in mg/kg unless otherwise noted

= Direct Exposure value not applicable except as part of the Benzo(a)pyrene equivalent.

b = Total Benzo(a)pyrene Equivalents calculated as per FDEP Conversion Table (Revised 11-26-07).

Soil Samples SS-1 through SW-2 Collected at Dispenser Closure Assessment (2017-See Appendix A)

Concentration exceeds SCTLs for Leachability
Concentration exceeds SCTLs for Direct Exposure

Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Instructions can be found below the table

Facility/Site Name:	Davis Oil Company Inc
Site Location:	726 E Main St, Immokalee, FL
Facility/Site ID No.:	11/8518121

TFF =	= Toxic	Equiva	lencv	Factor
· · L · -		Lyuiva		i actor

SCTL Type	Value	Units
Residential Direct Exposure SCTL	0.1	mg/kg
Industrial Direct Exposure SCTL	0.7	mg/kg
Alternative SCTL (Optional)		mg/kg
Site Specific Background (Optional)		mg/kg

							ī				
	Soil Sample #	SS-1	SS-2	SW-1	SW-2	23R	31R(2')	31R(4')	50(2')	SW-1R/SW-2R(3')	
	Sample Date	11/14/2017	11/14/2017	11/14/2017	11/14/2017	1/18/2022	1/18/2022	1/18/2022	1/18/2022	1/18/2022	
	Sample Location:	D-1	D-4	SW-3	SB-Bottom	23R(4')	31R(2')	31R(4')	50(2')	SW-1R/SW-2R(3')	
	Depth (ft):	2	3	4	4	4	2	4	2	3	
	. , ,			С	ontaminant Cond	entrations					
Contaminant	TEF	SS-1 (mg/kg)	SS-2 (mg/kg)	SW-1 (mg/kg)	SW-2 (mg/kg)	23R (mg/kg)	31R(2') (mg/kg)	31R(4') (mg/kg)	50(2') (mg/kg)	SW-1R/SW- 2R(3') (mg/kg)	
Benzo(a)pyrene	1.0	0.00105	0.021	0.027	0.02	0.0021	0.014	0.014	0.0019	0.00085	
Benzo(a)anthracene	0.1	0.0019	0.055	0.008	0.048	0.00105	0.063	0.063	0.001	0.0047	
Benzo(b)fluoranthene	0.1	0.0013	0.014	0.013	0.013	0.0033	0.018	0.017	0.0033	0.002	
Benzo(k)fluoranthene	0.01	0.00135	0.0055	0.006	0.0055	0.00125	0.0042	0.00235	0.00115	0.00115	
Chrysene	0.001	0.00185	0.036	0.008	0.031	0.00155	0.065	0.058	0.00145	0.0081	
Dibenz(a,h)anthracene	1.0	0.0015	0.006	0.0065	0.006	0.0009	0.0026	0.00165	0.0008	0.00085	
Indeno(1,2,3-cd)pyrene	0.1	0.00135	0.012	0.024	0.013	0.00125	0.0097	0.0094	0.00115	0.0012	
				E	Benzo(a)pyrene E	quivalents					
Contaminant	TEF	SS-1 (mg/kg)	SS-2 (mg/kg)	SW-1 (mg/kg)	SW-2 (mg/kg)	23R (mg/kg)	31R(2') (mg/kg)	31R(4') (mg/kg)	50(2') (mg/kg)	2R(3') (mg/kg)	
Benzo(a)pyrene	1.0	0.0011	0.0210	0.0270	0.0200	0.0021	0.0140	0.0140	0.0019	0.0009	0.0000
Benzo(a)anthracene	0.1	0.0002	0.0055	0.0008	0.0048	0.0001	0.0063	0.0063	0.0001	0.0005	0.0000
Benzo(b)fluoranthene	0.1	0.0001	0.0014	0.0013	0.0013	0.0003	0.0018	0.0017	0.0003	0.0002	0.0000
Benzo(k)fluoranthene	0.01	0.0000	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Chrysene	0.001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0	0.0015	0.0060	0.0065	0.0060	0.0009	0.0026	0.0017	0.0008	0.0009	0.0000
Indeno(1,2,3-cd)pyrene	0.1	0.0001	0.0012	0.0024	0.0013	0.0001	0.0010	0.0009	0.0001	0.0001	0.0000
					Total Equiva	lents					
Total Benzo(a)pyrene E	Equivalents	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					Comparisons to	SCTLs					
Does This Sample I	Exceed:	SS-1 (mg/kg)	SS-2 (mg/kg)	SW-1 (mg/kg)	SW-2 (mg/kg)	23R (mg/kg)	31R(2') (mg/kg)	31R(4') (mg/kg)	50(2') (mg/kg)	SW-1R/SW- 2R(3') (mg/kg)	
The Residential Direct Exp 0.1 mg/kg?		ок	ок	ок	ок	ОК	ок	ок	ок	ок	ок
The Industrial Direct Exposure SCTL of 0.7 mg/kg?		ок	ок	ок	ок	ОК	ок	ок	ок	ок	ок
No Alternative SCTL Given		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
No Site Specific Background Given		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

TABLE 5: SOIL ANALYTICAL SUMMARY (MADEP) JT Gater Foods Davis Oil Company INC Facility ID No. 118518121 **Facility Name:** 726/730 E. Main St., Immokalee, FL Facility Address: **UNIVERSAL No.: 5278** all constituents shown in mg/kg unless otherwise noted **Laboratory Analyses** Sample OVA Net OVA C11-C22 C19-C36 C9-C18 C5-C8 Depth to Sample C9-C10 C9-C12 Boring/ **Aliphatics** Aliphatics **Aliphatics Date Collected** Water Interval Reading **Aromatics** aliphatics **Aromatics** Well No. (fbls) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (ft) (ppm) (mg/kg) **Residential Exposure SCTL** 42,000 2,900 560 1,700 1,800 7,100 Leachability SCTL 1,000 140,000 960 380 31,000 SW-1R/2R 1/18/2022 5 3 84 280 620 I 1700 81 38 61 31R(2) 1/18/2022 5 2 731 1800 2100 U 6200 187 I 259 147 I 31R(4) 1/18/2022 758 1700 2100 U 6100 332 492 112 5 4

soil removed

* Not a health concern for this exposure scenario

NADC-Chapter 62-777 Natural Attenuation Concentration Level

GCTL-Chapter 62-777 Groundwater Cleanup Target Level

SCTL-Chapter 62-777 Soil Cleanup Target Level

Bolded/highlighted values indicate compound detected above SCTL's Bolded/highlighted values indicate compound detected above SCTL's

"bolded" only indicates compound was not detected; however GCTL/SCTL<MDL

NA/NS = Constituent not analyzed or not sampled

NR = Value not reported

ND = Not Detected

- L = Off scale high, value known to be higher than reported value
- Q = Indicates sample was prepared or analyzed after the holding time expired
- U or < = Constituent not detected at or above method detection limits
- <QL = Below quantitative limit
- D' = The sample(s) were diluted due to targets over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in final results
- J = Estimated value, see case jnarrative in laboratory report for specific details MDL-laboratory method detection limit

TABLE 6A: GROUNDWATER ANALYTICAL SUMMARY BTEX/MTBE (SPLP LEACHATE)

Gator Foods Davis Oil Company INC Facility ID No. 118518121 **Facility Name:** 726/730 E. Main St., Immokalee, FL **UNIVERSAL No.: 5278 Facility Address:**

all constituents shown in ug/l (ppb) unless otherwise noted

_					un	constituents s	nown in ug/i (ppi	of arricas ou	iei wise note	<u> </u>			
	Location	Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	Methyl tert-Butyl Ether	Naphthale ne	1- Methylnap hthalene	2- Methylnaphth alene	FL-PRO (mg/L)	
ľ	NADC		100	400	300	200	NA	200	140	280	280	50	
	GCTL		1	40	30	20	NA	20	14	28	28	5	
-[31R(2')	1/18/2022	3.9	0.89 I	250	2.9	260	0.71 U	110	82	100	NS	
<u> </u>	31R(4')	1/18/2022	11	1.8	470	4.5	490	0.71 U	210	150	200	NS	

soil removed

Facility Address:

Bolded/highlighted values indicate compound detecteda above GCTLs

Bolded/highlighted values indicate compound detected above NADCs

TABLE 6B: GROUNDWATER ANALYTICAL SUMMARY PAH'S (SPLP LEACHATE)

Cater Feeds Davis Oil Company INC **Facility Name:** 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121 **UNIVERSAL No.: 5278**

all constituents shown in ug/l (ppb) unless otherwise noted

							Benzo(b)fl				Dibenz(a,					
		Acenapht	Acenapht		Benz(a)Anth		uoranthen	Benzo(g,h,	Benzo(k)flu		h)Anthrac	Fluoranth			Phenanthr	
Location	Date	hene	hylene	Anthracene	racene	Benzo(a)pyrene	е	i)perylene	oranthene	Chrysene	ene	ene	Fluorene	Indeno(1,2,3-cd)pyrene	ene	Pyrene
NADC		200	2100	21000	5	20	5	2100	50	480	0.5	2800	2800	5	2100	2100
GCTL		20	210	2100	0.05	0.2	0.05	210	0.5	4.8	0.005	280	280	0.05	210	210
- 31R(2')	1/18/2022	5.6	0.0080 U	1.1	0.045 I	0.0091 U	0.014 l	0.011 U	0.0068 U	0.038 I	0.013 U	0.29	9.3	0.011 U	13	1.2
31R(4')	1/18/2022	12	0.0080 U	2.3	0.12	0.025 I	0.030	0.028 I	0.0096 I	0.12	0.013 U	0.71	17	0.018 I	27	3.1

soil removed

Bolded/highlighted values indicate compound detected above GCTLs

Bolded/highlighted values indicate compound detected above NADCs

Exhibit B

Facility Name: Gator Food, Inc.

Facility Address: 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121 Universal Project No. 5278

all constituents shown in ug/L (ppb) unless otherwise noted

	1			Ethyl-	Total	Total	(9)	7/2
ocation	Date	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	Naphthalene
able V: Chapte	er 62-777; Groundwate	r Natural Attenuation Defa	ult Source Concentration	ons				
		100	400	300	200	NA NA	200	140
Table I: Chapte	r 62-777; Groundwater	Cleanup Target Levels						
		1	40	30	20	NA NA	20	14
MW-4	06/29/00	<1	<1	<1	· <2	<5	<5	<5
MW-4	07/23/00	<1 .	<1	<1	<2	<5	<5	<5
MW-4	11/28/00	<1	<1	. <1.	<2	<5	<5	<5
MW-4	02/24/01	<1	<1	<1	<2	<5	<5	<5
MW-4	06/12/01	<1	<1	<1	<2	<5	<5	<5
MW-4	02/13/02	<1	<1	<1	<2	<5	. <5	<5
MW-4	09/21/06	<0.5	<0.5	<0.5	<1.5	<3.	<1	<2
MW-4	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 Ų	0.2562 U	0.199 U
				V-7-11/10		-		
MW-5D	06/29/00	<1	<1	<1	. <2	<5	<5	<5
MW-5D	07/23/00	<5	<5	<5	<5	<20	705.0	<5
MW-5D	11/28/00	<1	<1	<1	- <2	<5	280.0	<5
MW-5D	02/24/01	<1	<1	<1	<2	<5	<5	<5
MW-5D	06/12/01	<10	<10	<10	<20	<50	310.0	<5
MW-5D	02/13/02	<1	<1	<1	<2	<5	24.8	<5
MW-5D	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	8.576	<2
MW-5D	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	5.032	0.199 U
			7					
MW-9	06/29/00	<1 .	<1	<1	<2	<5	48.0	<5
MW-9	07/23/00	18.1	<1	40.3	81.7	140.1	97.4	<5
MW-9	11/28/00	<1	<1	<1	<2.	<5	<5	<5
MW-9	02/24/01	<1	<1	<1	<2	<5	5	<100
MW-9	06/12/01	<1	<1	<1	<2	<5	10.6	<5
MW-9	02/13/02	<1	<1	<1	<2	<5	<5	<5
MW-9	09/21/06	<0.5	<0.5	<0.5	<1.5	<3 .	10.93	<2
MW-9	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	4.106	0.199 U
MW-10	06/29/00	950.0	<10	1470.0	791.0	3211.0	440.0	105.0
MW-10	07/23/00	760.0	<20	1340.0	450.0	2550.0	405.0	145.0
MW-10	11/28/00	NS	NS	NS	NS	NS -	NS	NS
MW-10	02/24/01	NS	NS	NS	NS	NS	NS	NS
MW-10	06/12/01	NS	NS	NS	NS	NS	NS	NS
MW-10	02/13/02	NS NS	NS	NS	NS	NS	NS	NS
MW-10	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	. 10.19	<2

Exhibit B

Facility Name: Gator Food, Inc.

Facility Address: 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121 Universal Project No. 5278

all constituents shown in ug/L (ppb) unless otherwise noted

Location	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total B⊺€X	MTBE	Naphthalene
		r Natural Attenuation Defa	ult Source Concentrati	ons				
	,	100	400	300	200	NA	200	140
Table I. Chapter	62-777; Groundwater	Cleanup Target Levels						
		1	40	30	20	NA	20	14
MW-10	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	15.29	0.199 U
MW-12	06/29/00	23.5	· <1	11.0	<2	34.5	<5	<5
MW-12	07/23/00	<1	<1	<1	<2	<5	14.0	<5
MW-12	11/28/00	<1	<1	<1 .	<2 .	<5	<5	<5
MW-12	02/24/01	<1	<1	<1	<2	<5	<5	<5
MW-12	06/12/01	<1	<1	<1	<2	<5	23.7	<5
MW-12	02/13/02	<1	<1	<1	<2	<5	<5	<5
MW-12	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	<1	<2
MW-12	09/20/07	0.2105 U	0.1601 U	0.1959.U	0.2310 U	0.1601 U	3.640	0.199 U
 MW-14	06/29/00	<5	<5	11.0	6.0	17.0	1230.0	<5
MW-14	07/23/00	115.0	1.4	13.8	41.9	272.0	47.1	5.0
MW-14	11/28/00	32.5	<5	14.0	9.5	56.0	325.0	<5
MW-14	02/24/01	84.0	<10	22.0	22.0	128.0	1670.0	<5
MW-14	06/12/01	16.5	1.5	25.2	27.0	70.2	470,0	<5
MW-14	02/13/02	4.5	<1	5.7	3.4	13.6	125.0	<5
MW-14	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	<1	<2
MW-14	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
MW-14	02/08/08	0.210510	0 1601 U	0 1959 U	0.2310 U	0.1601 U	0. 7 562 V	NS
MW-15D	06/29/00	4.0	3.2	<1	109.2	116.4	145.0	40.0
MW-15D	07/23/00	<1	<1	<1	1.5	1.5	11.4	<50
MW-15D	11/28/00	3.7	4.1	1.5	29.3	38.6	27.7	7.0
MW-15D	02/24/01	<1	<1	<1	<2	<5	18.4	<5
MW-15D	06/12/01	<1	<1	<1	<2	<5	29.9	<5
MW-15D	02/13/02	5.4	2.9	2.5	154.8	165.6	55.5	<25
vW-15D	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	<1	<2
vW-15D	9/20/070	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
	06/29/00	NS	Ns	NS	NS	NS	NS	NS
MW-16	07/23/00	NS	NS	NS	NS	NS	NS	NS .

Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs

Facility Name: Gator Food, Inc.

Facility Address: 726/730 E. Main St., Immokalee, FL

Exhibit B

Facility ID No. 118518121 Universal Project No. 5278

all constituents shown in ug/L (ppb) unless otherwise noted

				Ethyl-	Total	Total	,	300
ocation	Date	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	Naphthalene
able V: Chapter	62-777; Groundwate	er Natural Attenuation Defau	ult Source Concentration	ons				
		100	400	300	200	NA	200	140
Table I: Chapter (62-777; Groundwate	r Cleanup Target Levels						
		1	40	30	20	NA	20	14
MW-16	11/28/00	NS	NS	NS	NS -	NS	NS	NS .
MW-16	02/24/01	NS	NS	NS	NS	NS	NS	NS
MW-16	06/12/01	NS	NS	NS NS	NS .	NS	NS	NS
WW-16	02/13/02	NS	. NS	NS	NS	NS	NS	NS
W-16	09/20/07	could not locate						
		*						
MW-17	06/29/00	34.7	<1	140.0	111.7	286.4	<5	<5
VW-17	07/23/00	44.3	3.0	39.0	20.8	107.1	84.3	<5
MW-17	11/28/00	40.5	<5 ,	140.0	47.0	227.5	1130.0	<5
MW-17	02/24/01	11.4	<2	58.2	9.2	78.8	545.0	<5
MW-17	06/12/01	<1	<1 .	8.8	<2	8.8	260.0	<5
лW-17	02/13/02	<1	<1	1.4	1.3	2.7	180.0	<25
MW-17 ·	09/21/06	14.47	1.125	72.66	17:808	106.063	136.0	16.5
MW-17	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	2.383	0.199 U
VIVV-17	02/08/08	0.93791	0.1601 U	3,111	3,044	7.0929	10,21	NS
					/	V		
MW-24	06/29/00	345.0	<2	125.0	35.4	505.4	64.8	<5
MW-24	07/23/00	71.0	<1	85.5	14.0	170.0	17.2	<5
MW-24	11/28/00	<1	<1	2.3	<2	2.3	<5	<5
MW-24	02/24/01	275.0	3.8	63.4	7.8	350.0	65.8	<5
MW-24	06/12/01	3.8	<1 .	49.0	4.8	57:6	18.4	<5
MW-24	02/13/02	<1	<1	<1	<2	<5	31.6	<5
MW-24	03/13/07	1.033	<0.1601	3.5	<0.231	4.6	5.5	<0.199
MW-24	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
			0 0 AMON*					
/W-18 USI	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.64921	0.199 U
MW-18 USI	02/08/08	0.2105 U	0 1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS
DUP#1 (24)	06/29/00	355.0	<2	130.0	42.4	427.4	61.2	<5
	06/29/00	925.0	<10	1510.0	840.0	3275.0	395.0	94.0
OUP#2 (10)	07/23/00	700.0	<20	1320.0	355.0	2375.0	360.0	145.0
OUP#1 (10)		<5	<5	<5	14.5	14.5	52.5	<50
OUP#2 (15D)	07/25/00		4.3	1.5	31.9	41.5	27.4	5.0
DUP (15D) DUP (9)	02/24/01	3.8	<1	<1	<2	<5	5	<100

Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs

Facility Name: Gator Food, Inc.

Exhibit B

Facility Address: 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121 Universal Project No. 5278

all constituents shown in ug/L (ppb) unless otherwise noted

				Ethyl-	Total	Total		·
Location	Date	Benzene	Toluene	benzené	Xylenes	BTÉX	MTBE	Naphthalene
Table V: Chapter 62	-777; Groundwater	Natural Attenuation Def	ault Source Concentratio	ns				
		100	400	300	200	NA NA	200	140
Table I: Chapter 62-	777; Groundwater i	Cleanup Target Levels						
		1	40	30	20	NA NA	20	14
DUP(50)	06/12/01	<1	<1	<1	<2	<5	. 34	<5 ·

Total Xylenes = sum of ortho-, meta-, and para- xylenes

NA = Not Applicable or Not Available

:Total BTEX = sum of Benzene, Toluene, Ethylbenzene and Total Xylenes

NS = Not Sampled for particular constituent(s)

BDL = Below Laboratory Detection Limits

Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs:

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400 Ron DeSantis Governor

Je a nette Nuñez Lt. Governor

Shawn Hamilton Secretary

Memorandum

To: Natasha Lampkin, Program Administrator

Petroleum Restoration Program

Florida Department of Environmental Protection

From: Alfie Nazario, P.E.

Petroleum Restoration Program Section 5

Florida Department of Environmental Protection

Subject: Recommend Approval of Site Rehabilitation Completion Order

Davis Oil Company Inc

726 E Main Street, Immokalee, Collier County FDEP Facility Identification # 118518121

I have reviewed and concur that the components of Source Removal Report (SRR) and No Further Action Proposal (NFAP) dated and received August 29, 2022, the Supplemental Site Assessment Report (SSAR) dated and received March 10, 2022, and the Addendum to the SSAR dated and received May 2, 2022, prepared for the March 17, 1994 and January 29, 2018 petroleum product discharges discovered at the above-referenced facility satisfy the requirements set forth in Chapter 62-780, Florida Administrative Code (F.A.C.) and that the data and conclusions in this report provide reasonable assurances that the site rehabilitation requirements stated in Chapter 62-780, F.A.C., have been met.

Alfie Nazario Digitally signed by Alfie Nazario Date: 2022.10.31 08:16:01 -04'00'

Alfie B. Nazario, P.E. Senior Engineer NorthStar Contracting Group, Inc. Petroleum Restoration Program Section Five From: Microsoft Outlook
To: davisoilco@gmail.com

Subject: Relayed: Site Rehabilitation Completion Order FAC ID 118518121

Date: Monday, November 21, 2022 2:15:42 PM

Attachments: Site Rehabilitation Completion Order FAC ID 118518121.msg

Delivery to these recipients or groups is complete, but no delivery notification was sent by the destination server: davisoilco@gmail.com (davisoilco@gmail.com) <mailto:davisoilco@gmail.com>
Subject: Site Rehabilitation Completion Order FAC ID 118518121

Department of Environmental Protection

2600 Blair Stone Road ♦ Tallahassee, Florida 32399-2400

DEP Form: 62-761.900(2)

Form Title: Storage Tank Facility Registration

Form

Effective Date: July 2019

Incorporated in Rule 62-761.400, F.A.C.

Title

Storage Tank Facility Registration Form

Submit this completed form for the facility when registration of storage tanks or comp	, 3	Florida Statutes
Please check all that apply: New Registration New Ow		
Existing Facility Info Update/Correction Existing	Owner Info Update/CorrectionExisting Ta	nk Info Update/Correction
A. FACILITY INFORMATION County: Collier	DEP Facility ID: <u>8518121</u>	
Facility Name: <u>Gator Foods</u>		
Facility Address: 730 E Main St	City: Immokalee	Zip: <u>34142 3817</u>
Facility Contact: DONALD DAVIS	Business Phone: (239) 657-4244	
Facility Type(s): D Financial	Responsibility Mechanism (choose): \square	Insurance Other
	Emergency Phone:	
B. ACCOUNT OWNER INFORMATION: Identify the Party responsible for payment of	f Registration Fees at the facility location nam	ed above
Legal Entity: <u>GATOR FOODS INC</u>	Ownership Effective Da	ate:
Contact Person: <u>Donald Davis</u>	STCM Account Numbe	r (if known): <u>38236</u>
Address: 540 New Market rd East		
City: Immokalee State: FL		Zip: <u>34142</u>
Telephone: (239) 657-4244 Email Address: davisoi	lco@gmail.com	
C. REAL PROPERTY OWNER INFORMATION: Identify the Party that is vested with o		
Legal Entity: Please see the attached sheet	·	Date:
Contact Person:		
Address:		
		Zip:
D. TANK/VESSEL INFORMATION: Complete one row for each storage tank or compre Tank ID Tor V A or U Capacity Installation Date Content Code Status		egistration Instructions for codes) Piping Monitoring
The same of the sa		riping wontoing
1		
2	- 	
3		
4	<u> </u>	
5		
6		
7		
8	- 	
Facility Registration Certification: To the best of my knowledge	and belief, all information submitt	ted on this form is
true, accurate and complete.		
The person signing this form is the: (check all that apply)		
The person signing this form is the. (check all that apply)	_	
Account Owner (Responsible for Registration Fees)	Real Property O	wner
Donald Davis		06/08/2020
Signature (right click to sign)		Date
Donald Davis		

Printed Name

Other Additional Details

Property Owner(s)

Company Name: GATOR FOODS INC

Name: Donald Davis

Address Line 1: 540 New Market rd East

Address Line 2:

City: Immokalee

State: FL Zip Code: 34142

Phone Number: (239) 657-4244

Cell Number:

Fax Number:

E-mail Address: davisoilco@gmail.com

Tank/Vessel Information

If you are editing the Tank ID, Installation Date or Tank Capacity, the new input will not be stored. To modify a Tank ID, Installation Date or Tank Capacity you must contact the Storage Tank registration staff at (850) 245-8839 or by e-mail at TankRegistration@dep.state.fl.us

Tank ID:

T/V: TANK

A/U: ABOVEGROUND

Capacity: 10159 **Installed:** 07/01/1962

Content: B
Status: U

Status Effective Date: 06/08/2020

Construction: C. K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Tank ID: 10 TANK

A/U: ABOVEGROUND

Capacity: 10000 **Installed:** 07/01/1990

Content: D
Status: U

Status Effective Date: 06/08/2020

Construction: C. K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Tank ID: 2

T/V: TANK

A/U: ABOVEGROUND

Capacity: 10159 **Installed:** 07/01/1962

Content: B
Status: U

Status Effective Date: 06/08/2020

Construction: C, K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Tank ID: 3

T/V: TANK

A/U: UNDERGROUND

Capacity: 1029

Installed: 07/01/1962

Content: A
Status: B

Status Effective Date: 06/30/1989

Construction: C, K

Piping: A, B, C, F, J, L

Monitoring: 2, 4, K, Q

Tank ID: 4

T/V: TANK

A/U: ABOVEGROUND

Capacity: 10159 **Installed:** 07/01/1962

Content: B
Status: U

Status Effective Date: 06/08/2020

Construction: C, K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Tank ID: 5

T/V: TANK

A/U: UNDERGROUND

Capacity: 6333

Installed: 07/01/1963

Content: E
Status: B

Status Effective Date: 10/31/1991

Construction: C
Piping: D
Monitoring: Y

Tank ID: 6

T/V: TANK

A/U: UNDERGROUND

Capacity: 2990

Installed: 07/01/1962

Content: E
Status: B

Status Effective Date: 10/31/1991

Construction: C
Piping: D
Monitoring: Y

Tank ID: 7

T/V: TANK

A/U: ABOVEGROUND

Capacity: 10159 **Installed:** 07/01/1962

Installed: 07/01 Content: D

Status: U

Status Effective Date: 06/08/2020

Construction: C, K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Tank ID: 8

T/V: TANK

A/U: ABOVEGROUND

Capacity: 10159 **Installed:** 07/01/1962

Content: D
Status: U

Status Effective Date: 06/08/2020

Construction: C, K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Tank ID: 9

T/V: TANK

A/U: ABOVEGROUND

Capacity: 10159

Installed: 07/01/1962

Content: B
Status: U

Status Effective Date: 06/08/2020

Construction: C, K

Piping: B, C, F, A, J, K, L

Monitoring: Q, K, 2, 4

Florida Department of Environmental Protection

Bob Martinez Center • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

Division of Waste Management - Storage Tank Facility Registration Form Registration Instructions and Codes List

Storage tank registration is available online through the DEP Business Portal in lieu of the paper form:

- DEP Business Portal can be found: Online Services Business Portal (ESSA)
- Instructions on how to navigate the DEP Business Portal can be found on the DEP Registration web page: Storage Tank Facility Registration

Storage Tank Facility Registration Form

In the first outlined section block, identify the types of information being submitted on the registration form. [Forms 62-761.900(2) for Underground Storage Tanks (USTs), and 62-762.901(2) for Aboveground Storage Tanks (ASTs). For facilities with both types of tanks, one form may be used].

Check **New Registration** when the **location** is being registered for the first time and no Facility Identification number exists. If submitting a revised Registration form, check all other boxes that apply to designate the type(s) of revisions being submitted.

A. Facility Information

County List the county where the storage tank facility is located.

Facility ID Include the DEP Facility Identification number whenever possible. Write in "Pending" when submitting a new registration for the first time. Remember: the Facility ID number identifies the location, and it

does not change even when a facility is transferred to a new owner upon sale of the facility.

Facility Name Provide the current name of the business establishment operating at the facility location. When

registering an abandoned facility, where tanks exist but there is no operational business, identify the location with the property owner's name, as in "Smith Property", if no other facility name is being

used.

Facility Address Include the street number and name. In a rural area with no street number associated with it, provide

the parcel ID number along with directions (e.g., 'x' miles N of intersection...). Provide the name and

telephone number of a contact person or manager on location, where possible.

Facility Type This information is an explanation or term that most closely describes the operational use of the

facility. Select the code(s) that provides the best or most appropriate description of the facility.

1. If the facility is owned by a government entity, select the appropriate type from the following:

F. Federal Government

H. Local or City Government

N. Native Tribal Lands

G. State Government

I. County Government

- 2. If the facility meets the definition of "bulk product facility" a waterfront location with at least one aboveground tank with a capacity greater than 30,000 gallons which is used for the storage of pollutants ("Pollutants" includes oil of any kind and in any form, gasoline, pesticides, ammonia, chlorine, and derivatives thereof, excluding liquefied petroleum gas"); select the type from:
 - T. Coastal bulk product facility facility, as defined above and located on the Florida coast, may have storage tank systems that store hazardous substances in addition to pollutants. ("Coastline means the line of mean low water along the portion of the coast that is in direct contact with the open sea and the line marking the seaward limit of inland waters, as determined under the Convention on Territorial Seas and the Contiguous Zone, 15 U.S.T. (Pt. 2) 1606.").
 - **S.** Inland waterfront bulk product facility a facility, as defined above and located on "inland waterways" (lakes, rivers), may have storage tank systems that store hazardous substances in addition to pollutants.
- 3. When the facility is a "waterfront location", but not a *bulk product facility* as defined above, select the most appropriate type from:
 - V. Marine fueling facility a commercial, recreational, or retail coastal facility that provides fuel to vessels and may store other pollutants and/or hazardous substances on site.

Facility Type continued

- **W.** Waterfront fueling facility a commercial, recreational, or retail facility located on a non-coastal waterway that provides fuel to vessels and may store other pollutants and/or hazardous substances on site.
- 4. When the facility is not described as previously stated, select the most appropriate type from:
 - A. Retail Station primarily supplies vehicular fuel to automotive customers; may store other regulated substances.
 - **C.** Fuel User, Non-retail primarily stores motor fuel and/or other pollutants or hazardous substances for consumption by facility/owner/operator.
 - D. Inland Bulk Petroleum Storage inland facility with no waterfront access, that has multiple active UST and/or AST storage systems used primarily for storage of pollutants intended for distribution. May also store hazardous substances on-site for facility consumption and/or distribution purposes.
 - E. Industrial Plant inland facility with no waterfront access; may include power plants and facilities designed for manufacturing and/or chemical processing; may have multiple active UST and/or AST storage systems used for storage of pollutants and/or hazardous substances intended for facility consumption.
 - J. Collection Station maintenance or other related facility that acquires and temporarily stores used and/or waste oil prior to recycling and/or disposal.
 - **K.** Inland Bulk Chemical Storage inland facility with no waterfront access, that has multiple active UST and/or AST storage systems and/or compression vessels used for storage of hazardous substances intended for distribution. May also store pollutants on site for facility consumption and/or distribution purposes.
 - L. Chemical User facility primarily uses regulated hazardous substance tanks on site; may also store pollutants.
 - **M.** Agricultural facility actively used in production of crops, plants, or livestock.
 - P. UST Residential (>1100 gallons) residence with USTs regulated by Federal Environmental Protection Agency.
 - **Z.** Other Identify the type of establishment that you are registering.

Financial Responsibility – The demonstration of financial responsibility shall be made by the owner or operator in accordance with 40 CFR 280, Subpart H. Check box for Insurance or Other (includes all other financial responsibility methods).

24 Hour Emergency Contact - Provide the name and telephone number of the Emergency Contact for this facility.

B. Account Owner Information

- Provide the name, address, contact name, telephone number, and email address of the individual(s) and/or business(es) that are responsible for the operation of the storage tanks and for the payment of DEP annual Storage Tank Registration fees. The Account Owner is responsible for payment of the annual storage tank registration fees and will receive the annual storage tank registration placard(s) upon payment. Please provide your account owner's (STCM) email address for your Accounts Payable (AP) or the contact to whom all invoices are to be emailed.
- When submitting revisions to owner's contact name or address information, please include their STCM Account Number.
- 3. When ownership changes, submit a registration form complete with the effective date of ownership and new account owner's signature.

C. Real Property Owner Information

- Provide the legal entity name, address, contact name, telephone number, and email address of the individual(s) and/or business(es) that are vested with ownership, dominion or legal or rightful title to the real property.
- 2. Submit a registration form when the property ownership changes, complete with the date.

- **D.** Tank/Compression Vessel Information Complete one row in Section D for each storage tank and/or compression vessel system located at the facility. Use the following system description codes where appropriate.
 - 1. Tank ID number the systems sequentially, or provide a unique ID number; do not use symbols (#, %, -, etc.).
 - 2. **Tank or Vessel Indicator** choose T or V to describe the system type.
 - 3. Tank Placement choose A or U to designate aboveground or underground placement of the system.
 - 4. **Tank Capacity** enter the storage tank capacity in gallons.
 - 5. Installation Date record the date of installation in 'MM/YY' format; provide a best estimate if unknown.
 - 6. Tank Content record the current content (or last content, if system is closed or out-of-service) from the list below:
- A Leaded Gasoline
- B Unleaded Gasoline (No Ethanol)
- D Diesel Fuel
- E Aviation Gasoline
- F Jet Fuel
- G Diesel Fuel-Emergency Generator
- J Used Oil
- K Kerosene
- L Waste Oil

- M Fuel Oil: On-site Heating Only; USTs or ASTs < 30K gals^
- N Fuel Oil: Distribution; or On-site Heating ASTs > 30K gals¥
- O New and Lube Oil
- Q Pesticide
- R Ammonia Compound
- S Chlorine Compound
- T Hazardous Substance (CERCLA)
- U Mineral Acid*
- V Grades 5 & 6 Bunker "C" Residual Oils

- W Petroleum-based Additive Product
- X Miscellaneous Petroleum-based Product
- Y Unknown Substance
- Z Other Substance (please identify)
- 7 Biodiesel (B20)
- 8 E10 Blend of 10% Ethanol/90% Gasoline
- 9 E85 Blend of 85% Ethanol/15% Gasoline
- * Mineral Acid = Hydrobromic acid, Hydrochloric acid, Hydrofluoric acid, Phosphoric acid and Sulfuric acid.
- ^ M = fuel is used solely to heat the facility premises and must be stored in a tank with capacity < 30,000 gallons; exempt from regulation.
- * N = fuel is distributed as heating fuel, or fuel is used solely to heat the facility premises, but the storage tank capacity exceeds 30,000 gallons.
- ** Compartmented tanks register as a single tank; itemize the size and contents of each compartment. See construction miscellaneous attributes.
- ** Manifold tanks register as individual storage tanks; with individual size and content even though they are "connected".
 - 7. **Status** record the current status of the system, and the status effective date (or best estimate) in 'MM/YY' format. Update the tank status timely, as necessary for tanks moving between "in service" and "out-of-service" status.
 - A. Properly closed in-place UST filled with sand, concrete or other inert material; AST rendered unusable.
 - **B.** Removed from the site.
 - **D.** Deleted Data Error Added to STCM in error; may be a duplicate tank (and/or facility), or tank was registered prior to installation and decided not to have tank installed.
 - **E.** Construction modified AST constructed as a "mobile tank" or enclosed in a building; no longer retains a "regulated" status.
 - **M.** Moved to New Site Designation that identifies a tank as removed from a particular facility and reinstalled at a second facility.
 - **T.** Out-of-service tank Tank system that is designated as out-of-service by the owner or operator.
 - **U.** In-service Tank system that is NOT designated as out-of-service by the owner or operator.
 - V. Temporary out-of-service Field erected storage tank system that is designated as temporary out-of-service by the owner or operator.
 - X. Non-regulated use/process Exempt from regulation due to how the tank or substance is used; i.e., tank stores diesel used in FLOWTHROUGH process.
 - **2.** Non-regulated product Stored in tank; provide status effective date when status relates to a 'change in product' from a regulated substance to a non-regulated substance for a particular storage tank.
 - 8. **Construction, Piping, and Monitoring Attributes** Select from the lists on the following page the codes that best describe the attributes of each storage tank system.

CONSTRUCTION Primary Construction:	C Steel D Unknown E Fiberglass F Fiberglass-clad steel	X ConcreteY PolyethyleneZ Other DEP approved protection method
Overfill/Spill:	A Ball check valve M Spill containment bucket N Flow shut-off	O Tight fillP Level gauges, high-level alarmsQ Other DEP approved protection method
Corrosion Protection	G Cathodic protection – sacrificial anode	H Cathodic protection – impressed current
Secondary Containment	Double-walled construction: single material (or R Double-walled construction: dual material (out "jacket") Synthetic liner in tank excavation Concrete, synthetic material, and/or off-site cla Other DEP approved/registered containment sy	er tank – concrete, approved synthetic material, or tank ys beneath AST and in containment area
Construction: Miscellaneous Attributes	B Internal Lining L Compartmented	U Field Erected W Built on supports
PIPING Primary Construction	B Steel or Galvanized MetalC FiberglassN Approved Synthetic Material	X No piping associated with tankY UnknownZ Other DEP approved piping material
Corrosion Protection	D External Protective Coating E Cathodically Protected with Sacrificial Anode or	· Impressed Current
Secondary Containment	G Synthetic liner or box/trench liner in piping exca	er pipe approved synthetic material or pipe "jacket")
Piping: Miscellaneous Attributes	 A Aboveground – no contact with soil I Suction Piping System J Pressurized Piping System W Piping over water 	 K Dispenser Sumps L Bulk Product System H Airport/Seaport Hydrant System
MONITORING External	E Monitoring of UST synthetic linerQ Visual Inspection of AST Systems8 Manually Sampled Wells	W Fiber-optics TechnologiesZ Other DEP approved monitoring methods
Internal	F Interstitial Space – Double-walled Tank R Interstitial Monitoring of AST Tank Bottom	
Piping Monitoring	G Electronic Line Leak Detector with Flow Shutoff H Mechanical Line Leak Detector J Monitoring of Piping Liner	 K Interstitial Monitoring – Double-walled Piping U Bulk Product Piping Pressure Test External Monitoring
Miscellaneous	 Not Required – See Rule for Exemptions Unknown Continuous Electronic Sensing Equipment Visual Inspections of Piping Sumps 	 3 Electronic Monitoring of Piping Sumps 4 Visual Inspections of Dispenser Sumps 5 Electronic Monitoring of Dispenser Sumps

E. Certified Contractor and Certification

Record the name and the *Department of Business and Professional Regulation License Number* for the *Certified Contractor* whenever an underground storage tank has been installed or removed. Do not rely on the contractor to file this form. Storage Tank Registration Forms are required to be submitted by the storage tank system owner.

Please Remember - The Registration Form cannot be processed without the name and signature of the storage tank system owner and the date of the form submittal. Please print the name legibly in case a representative of the storage tank program should need to contact you.

Submit form to tankregistration@floridadep.gov

If you have questions, please call a storage tank registration representative at (850) 245-8839 or email tankregistration@floridadep.gov for assistance. Thank you for your cooperation.

UNIVERSAL Solutions, Inc.

Engineers, Scientists, Environmental Consultants 8339 Stone Run Court, Tampa, Flordia 33615 813-639-1241 www.usienvironmental.com

January 22, 2023

Sent via email: JTromer@northstar.com

c/o Florida Department of Environmental Protection 2600 Blair Stone Rd. Tallahassee. Florida 32399-2400

Attn: Ms. Jessica Tromer

Associate Scientist

NorthStar Contracting Group, Inc.

Petroleum Restoration Program Section Five

jtromer@northstar.com

Subject: Well Plugging & Abandonment Report

Gator Food Store/Davis Oil Company

726/730 E. Main Street

Immokalee, Collier County, FI FDEP Fac. ID# 11/8518121

Dear Ms. Tromer.

UNIVERSAL Solutions, Inc. (USI) is pleased to submit this Well Plugging and Abandonment Report. The report addresses the Site Rehabilitation and Closure Approval letter dated November 21, 2022. On January 7, 2023, MDM Services, Lakeland, Florida a Licensed Water Well Driller and Universal Solutions personnel mobilized to the subject facility in order to plug and abandon the existing monitor wells.

MDM obtained a well plugging permit from Collier county an proceeded to plug and abandon a total of ten (10) site monitor wells per Collier County and Water Management District Well Abandonment Guidelines. **Appendix A** includes a copy of the Permit and the Well Completion Reports.

Key documentation provided includes the following:

Appendices

Appendix A: Plugging Permit and Well Completion Reports

If you have any questions, Please call or email John McKeague at (813) 230-6422 or email Jmckeague@usienvironmental.com.

Respectfully Submitted,

John McKeague

Universal Solutions, Inc. John McKeague, P.G. Florida License No. 081

Cc: Donnie Davis, Davis Oil Company

APPENDIX A

COLLIER COUNTY BOARD OF COUNTY COMMISSIONERS

PERMIT

<u>PERMIT #:</u> PRWL2022125780101 <u>PERMIT TYPE:</u> Well Permits

DATE ISSUED: January 04, 2023

BUILDING CODE IN EFFECT: FBC 7th Edition 2020 w/ 2022 sup2

JOB ADDRESS: 726 E Main ST, Immokalee

FOLIO #: 116560007

JOB DESCRIPTION: Abandonment of (8) shallow wells

726 E Main ST, Immokalee

OWNER INFORMATION:

DAVIS OIL COMPANY INC

726 E MAIN STREET

IMMOKALEE, FL 34142

AREA OF WORK (SQFT):

SETBACKS:

FRONT: REAR: LEFT: RIGHT:

FLOOD ZONE:

SEWER:

WATER:

CONTRACTOR INFORMATION:

MDM SERVICES, INC.

1055 KATHLEEN RD

LAKELAND, FL 33805

(863) 646-9130 Ext: Michael A.

CERTIFICATE #:

C26718

INSPECTION JOB CARD

To schedule inspections call 239-252-3726 or visit https://cvportal.colliercountyfl.gov/cityviewweb

SETBACKS	S:										
FRONT:		REAR:		LEFT:		RIGHT:		SPECIAL:		FLOOD	FZ
										ZONE:	
INSPECTI	ION			OUTCOME				COM	MENTS		
804 - Wel	I										
OPEN CO	NDITIONS	3									
Condition	Type:	Conditi	ion Descrip	otion:							
Inspection	Hold	Please upload the Well Completion Report to this condition on the CityView portal located at https://cvportal.colliercountyfl.gov/cityviewweb									

NOTE: If you are unable to schedule your inspection, please contact the inspection desk at 252-2400.

NOISE ORDINANCE: Collier County Codes of Laws and Ordinances 54-92(f) Construction Sound. NOISE LIMITATIONS are in effect at all times. Work permitted, RESIDENTIAL Areas – 6:30 AM to 7:00 PM Monday thru Saturday; NON-RESIDENTIAL Areas (more than 500 feet from Residential Area) 6:00AM to 8:00PM Monday thru Saturday. No Work on Sundays or Holidays. RADIOS, LOUDSPEAKERS, ETC. – Must not disturb peace, quiet and comfort of neighboring inhabitants. FREE CABLE LOCATIONS – Call 48 Hours prior to digging/FPL 434-1222/UTS 1-800-542-0088/PalmerCATV 783-0638 and all other applicable utilities.

Per currently adopted building code ordinance, as it may be amended, all work must comply with all applicable laws, codes, ordinances, and any additional stipulations or conditions of this permit. This permit expires if work authorized by the permit is not commenced within six (6) months from the date of issuance of the permit. Additional fees for failing to obtain permits prior to the commencement of construction may be imposed. Permittee(s) further understands that any contractor that may be employed must be a licensed contractor and that the structure must not be used or occupied until a Certificate of Occupancy is issued.

NOTICE: PRIOR TO THE REMOVAL OF ASBESTOS PRODUCTS OR THE DEMOLITION OF A STRUCTURE, FEDERAL AND STATE LAWS REQUIRE THE PERMITTEE (EITHER THE OWNER OR CONTRACTOR) TO SUBMIT A NOTICE OF THE INTENDED WORK TO THE STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION (DEP). FOR MORE INFORMATION, CONTACT DEP AT (239) 344-5600.

NOTICE: In addition to the conditions of this permit, there may be additional restrictions applicable to this property that may be found in the public records of this county, and there may be additional permits required from other governmental entities such as water management districts, state agencies, or federal agencies.

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

COLLIER COUNTY BOARD OF COUNTY COMMISSIONERS

PERMIT

PERMIT #: PRWL2022125780201 PERMIT TYPE: Well Permits

DATE ISSUED: January 04, 2023

BUILDING CODE IN EFFECT: FBC 7th Edition 2020 w/ 2022 sup2

JOB ADDRESS: 726 E Main ST, Immokalee

FOLIO #: 116560007

JOB DESCRIPTION: Abandonment of (2) deep monitoring wells

726 E Main ST, Immokalee

OWNER INFORMATION:

DAVIS OIL COMPANY INC

726 E MAIN STREET

IMMOKALEE, FL 34142

AREA OF WORK (SQFT):

SETBACKS:

FRONT: REAR: LEFT: RIGHT:

FLOOD ZONE:

SEWER:

WATER:

CONTRACTOR INFORMATION:

MDM SERVICES, INC.

1055 KATHLEEN RD

LAKELAND, FL 33805

(863) 646-9130 Ext: Michael A.

CERTIFICATE #:

C26718

INSPECTION JOB CARD

To schedule inspections call 239-252-3726 or visit https://cvportal.colliercountyfl.gov/cityviewweb

SETBACKS	S:										
FRONT:		REAR:		LEFT:		RIGHT:		SPECIAL:		FLOOD	FZ
										ZONE:	
INSPECTI	ON			OUTCOME				COM	MENTS		
804 - Well											
OPEN COI	NDITIONS	5									
Condition	Туре:	Conditi	on Descrip	otion:							
		Please u	ipload the V	Vell Comple	etion Repor	t to this con	dition on t	he CityView	portal loca	ated at	
Inspection	Hold	https://	cvportal.col	liercountyfl	.gov/cityvi	ewweb		3	•		
'		'	•	J	0 3						

NOTE: If you are unable to schedule your inspection, please contact the inspection desk at 252-2400.

NOISE ORDINANCE: Collier County Codes of Laws and Ordinances 54-92(f) Construction Sound. NOISE LIMITATIONS are in effect at all times. Work permitted, RESIDENTIAL Areas – 6:30 AM to 7:00 PM Monday thru Saturday; NON-RESIDENTIAL Areas (more than 500 feet from Residential Area) 6:00AM to 8:00PM Monday thru Saturday. No Work on Sundays or Holidays. RADIOS, LOUDSPEAKERS, ETC. – Must not disturb peace, quiet and comfort of neighboring inhabitants. FREE CABLE LOCATIONS – Call 48 Hours prior to digging/FPL 434-1222/UTS 1-800-542-0088/PalmerCATV 783-0638 and all other applicable utilities.

Per currently adopted building code ordinance, as it may be amended, all work must comply with all applicable laws, codes, ordinances, and any additional stipulations or conditions of this permit. This permit expires if work authorized by the permit is not commenced within six (6) months from the date of issuance of the permit. Additional fees for failing to obtain permits prior to the commencement of construction may be imposed. Permittee(s) further understands that any contractor that may be employed must be a licensed contractor and that the structure must not be used or occupied until a Certificate of Occupancy is issued.

NOTICE: PRIOR TO THE REMOVAL OF ASBESTOS PRODUCTS OR THE DEMOLITION OF A STRUCTURE, FEDERAL AND STATE LAWS REQUIRE THE PERMITTEE (EITHER THE OWNER OR CONTRACTOR) TO SUBMIT A NOTICE OF THE INTENDED WORK TO THE STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION (DEP). FOR MORE INFORMATION, CONTACT DEP AT (239) 344-5600.

NOTICE: In addition to the conditions of this permit, there may be additional restrictions applicable to this property that may be found in the public records of this county, and there may be additional permits required from other governmental entities such as water management districts, state agencies, or federal agencies.

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

STATE OF FLORIDA WELL COMPLETION REPORT

 $\square \, \text{Southwest} \\ \square \, \text{Northwest}$

PLEASE, FILL OUT ALL APPLICABLE FIELDS (*Denotes Required Fields Where Applicable)

☐St. Johns River

☐ South Florida □Suwannee River
□DEP

■ Delegated Authority (If Applicable) Collier County

Date Stamp

Cilical Ose Only
1.*Permit Number PRWL2022125780101 *CUP/WUP Number N/A *DID Number N/A 62-524 Delineation No. N/A
2.*Number of permitted wells constructed, repaired, or abandoned 8 *Number of permitted wells not constructed, repaired, or abandoned 0
3.*Owner's Name Davis Oil Company 4.*Completion Date 01/07/23 5. Florida Unique ID
6. 726 E. Main St., Immokalee, FL 34142 *Well Location - Address, Road Name or Number, City, ZIP
7.*County_Collier*Section_3 Land Grant*Township_47 S*Range_29 E
8. Latitude Longitude
9. Data Obtained From:GPSMapSurvey
10.*Type of Work:ConstructionRepairModification✓_Abandonment 11.*Specify Intended Use(s) of Well(s):Landscape IrrigationLivestockLivestockVmonitoring
12.*Drill Method:AugerCable ToolRotaryCombination (Two or More Methods)JettedSonic
Horizontal DrillingHydraulic Point (Direct Push)Other Plugged by approved method
16.*Total Well Depth 3.8 ft. Cased Depth 13.8 ft. *Open Hole: From To ft. *Screen: From 3.8 To 13.8 ft. Slot Size 0.010
17.*Abandonment:
19.*Primary Casing Diameter and Depth: Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other 20.*Liner Casing Diameter and Depth: Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other
Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other 21.*Telescope Casing Diameter and Depth: Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other Dia in. From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other
22. Pump Type (If Known): 23. Chemical Analysis (When Required):
CentrifugalJetSubmersibleTurbine Ironppm Sulfateppm Chlorideppm Horsepower Pump Capacity (GPM) Pump Depthft. Intake DepthftLaboratory TestField Test Kit 24. Water Well Contractor:
*Contractor Name Michael Alexander *License Number 9248 E-mail Address mike.alexander@mdmservices.com
*Contractor's Signature *Driller's Name (Print or Type) Marcus Williams

*Permit No. PRWL2022125780101

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 PHONE: (352) 796-7211 or (800) 423-1476

WWW.SWFWMD.STATE.FL.US

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

4049 REID STREET, PALATKA, FL 32178-1429

PHONE: (386) 329-4500 WWW.SJRWMD.COM

NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT

152 WATER MANAGEMENT DR., HAVANA, FL 32333-4712

(U.S. Highway 90, 10 miles west of Tallahassee)

PHONE: (850) 539-5999 WWW.NWFWMD.STATE.FL.US

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

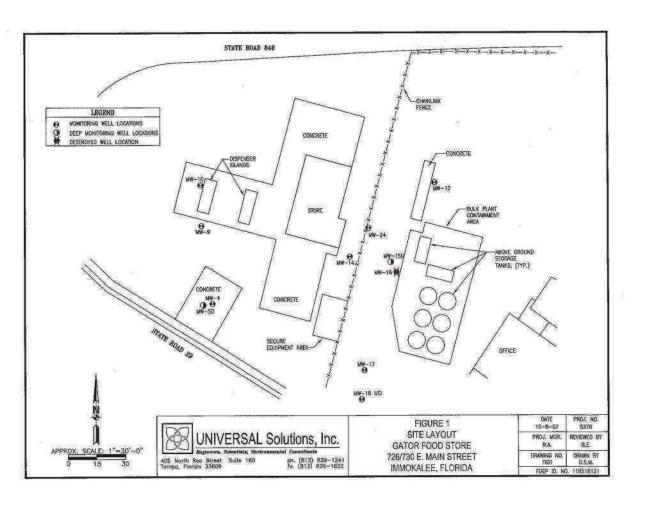
P.O. BOX 24680 3301 GUN CLUB ROAD WEST PALM BEACH, FL 33416-4680 PHONE: (561) 686-8800 WWW.SFWMD.GOV

SUWANNEE RIVER WATER MANAGEMENT DISTRICT

9225 CR 49

LIVE OAK, FL 32060

PHONE: (386) 362-1001 or (800) 226-1066 (Florida only)


WWW.MYSUWANNEERIVER.COM

*DRILL CU	TTINGS	LOG (Ex	xamine cutti	ings every	20 ft. or at formation changes. Note cavities and de	pth to producing zone. Grain Size: F=Fine,
M=Medium,	and C=0	Coarse)				
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.		Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	_ Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To		Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material

*Detailed Site Map of Well Location

Comments: See attached site map for well locations. (MW-4, MW-9, MW-10, MW-12, MW-14, MW-17, MW-24, and MW-18USI)

Z

STATE OF FLORIDA WELL COMPLETION REPORT

 $\square \, \text{Southwest} \\ \square \, \text{Northwest}$

PLEASE, FILL OUT ALL APPLICABLE FIELDS (*Denotes Required Fields Where Applicable)

☐St. Johns River ☐ South Florida

□Suwannee River
□DEP

■ Delegated Authority (If Applicable) Collier County

Date Stamp

Official Use Only

1.*Permit Number_PRWL2022125780201_*CUP/WUP Number_N/A*DID Number_N/A62-524 Delineation No. N/A
2.*Number of permitted wells constructed, repaired, or abandoned 2
3.*Owner's Name Davis Oil Company 4.*Completion Date 01/07/23 5. Florida Unique ID
6. 726 E. Main St., Immokalee, FL 34142 *Well Location - Address, Road Name or Number, City, ZIP
7.*County Collier *Section 3 Land Grant *Township 47 S *Range 29 E
8. Latitude Longitude
9. Data Obtained From:GPSMapSurvey
10.*Type of Work:ConstructionRepairModification Abandonment 11.*Specify Intended Use(s) of Well(s):Landscape IrrigationLivestock
Class V Injection:Recharge Commercial/Industrial DisposalAquifer Storage and RecoveryDrainage
Remediation:RecoveryAir SpargeOther (Describe) Other (Describe)
12 *Drill Method: Auger Cable Tool Rotary Combination (Two or More Methods) Jetted Sonic
Horizontal Drilling Hydraulic Point (Direct Push) ✓ Other Plugged by approved method 13.*Measured Static Water Level 15 ft. Measured Pumping Water Level ft. After Hours at GPM 14.*Measuring Point (Describe) TOC Which is 0.5 ft. Above ✓ Below Land Surface *Flowing: Yes No. No. 15.*Casing Material: Black Steel Galvanized ✓ PVC Stainless Steel Not Cased Other
16.*Total Well Depth 28.9 ft. Cased Depth 23.9 ft. *Open Hole: From To ft. *Screen: From 23.9 To 28.9 ft. Slot Size 0.010
From 0 ft. To 28.9 ft. No. of Bags 4 Seal Material (Check One): ✓ Neat Cement Bentonite Other From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other From ft. To ft. No. of Bags Seal Material (Check One): Neat Cement Bentonite Other
18.*Surface Casing Diameter and Depth: Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther
19.*Primary Casing Diameter and Depth: Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat CementBentoniteOther
20.*Liner Casing Diameter and Depth: Diain. Fromft. Toft. No. of Bags Seal Material (Check One): Neat CementBentoniteOther Other Diain. Fromft. Toft. No. of Bags Seal Material (Check One): Neat CementBentoniteOther Other Diain. Fromft. Toft. No. of Bags Seal Material (Check One): Neat CementBentoniteOther Other
21.*Telescope Casing Diameter and Depth: Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat Cement Bentonite Other Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat Cement Bentonite Other Diain. Fromft. Toft. No. of Bags Seal Material (Check One):Neat Cement Bentonite Other
22. Pump Type (If Known): 23. Chemical Analysis (When Required):
CentrifugalJetSubmersibleTurbine
Pump Depthft. Intake DepthftLaboratory TestField Test Kit
24. Water Well Contractor:
*Contractor Name Michael Alexander *License Number 9248 E-mail Address mike.alexander@mdmservices.com
*Contractor's Signature*Driller's Name (Print or Type) Marcus Williams

*Permit No. PRWL2022125780201

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 PHONE: (352) 796-7211 or (800) 423-1476

WWW.SWFWMD.STATE.FL.US

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

4049 REID STREET, PALATKA, FL 32178-1429

PHONE: (386) 329-4500 WWW.SJRWMD.COM

NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT

152 WATER MANAGEMENT DR., HAVANA, FL 32333-4712

(U.S. Highway 90, 10 miles west of Tallahassee)

PHONE: (850) 539-5999 WWW.NWFWMD.STATE.FL.US

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

P.O. BOX 24680 3301 GUN CLUB ROAD WEST PALM BEACH, FL 33416-4680 PHONE: (561) 686-8800

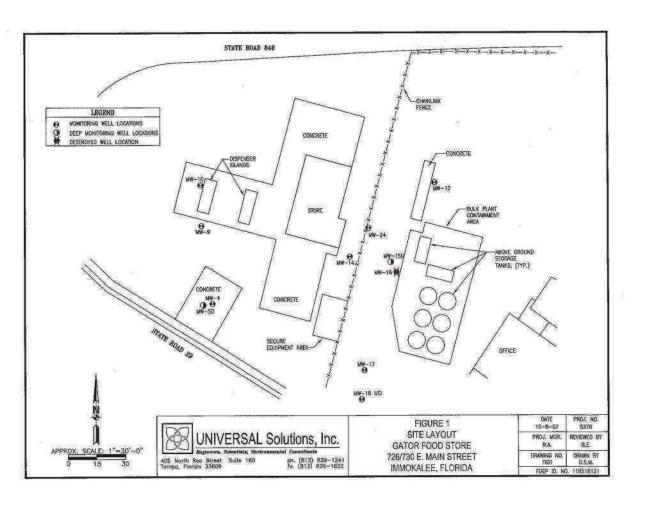
PHONE: (561) 686-880 WWW.SFWMD.GOV

SUWANNEE RIVER WATER MANAGEMENT DISTRICT

9225 CR 49

LIVE OAK, FL 32060

PHONE: (386) 362-1001 or (800) 226-1066 (Florida only)


WWW.MYSUWANNEERIVER.COM

*DRILL CU	TTINGS	LOG (Exa	amine cutti	ngs every 20 f	ft. or at formation changes. Note cavities and depth to producing zone. Grain Size: F=Fine,
M=Medium,	and C=0	Coarse)			
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From		To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To		Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From		To		Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	Grain Size (F, M, C) Material
From	ft.	To		Color	Grain Size (F, M, C) Material
From	ft.	To	ft.	Color	

Comments:	See attached	I site map for	well locations.	(MW-5D and	MW-15D)

*Detailed Site Map of Well Location

Z

Site 31 – Collier County - Immokalee Airport Site

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

South District Office 2295 Victoria Avenue, Suite 364 Fort Myers, Florida 33901-3881 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Sent via email to: sonja.stephenson@colliercountyfl.gov

Date: 10/05/2022

Sonja Stephenson 3335 Tamiami Trail Naples, FL 34112

RE: Authorization for Disaster Debris Management Sites (DDMS) - Ian

Dear Sonja Stephenson,

In accordance with the Emergency Final Order OGC No. 22-2602 (the Order), which was executed on 09/24/2022, the Department may issue field authorizations for disaster debris management sites (DDMS) to be used for temporary storage and processing of disaster debris. Disaster debris includes hurricane/storm-generated debris and all other types of disaster debris. The Order also gives the Department authority to include specific conditions in the field authorizations for the operation and closure of a DDMS, which may delineate a required closure date that extends beyond the expiration of the Order. A copy of this Order may be obtained from the DEP website http://www.dep.state.fl.us/mainpage/em/info.htm

The Department has evaluated your request for a DDMS at the following location:

WACS ID: 98127 Collier County - Immokalee Airport Site 199 Airport Road (700 Cr 846 East), Immokalee Lat 26:25:9 / Long 81:24:32

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed Debris

The use of this DDMS is authorized subject to the following conditions, in addition to the requirements of the Order and Florida Statutes 403.7071:

- 1. The Department must be notified when the site is opened and begins accepting debris, and when the site is closed and all debris has been removed;
- 2. Standing water must not be allowed to accumulate in or within 50 feet of areas used to store or process disaster debris;
- 3. Access must be controlled to prevent unauthorized dumping and scavenging;
- 4. A DDMS must have spotters to correctly identify and segregate waste types for appropriate management;
- 5. Once the site is open, a spotter must be located in the area where waste is being deposited in order to spot and remove prohibited waste items;
- 6. The DDMS is limited to managing the type(s) of debris listed above; any putrescible waste received at the DDMS must be removed from the site within 48 hours; all other types of prohibited waste should be managed in

- accordance with the guidance document (see link below);
- 7. Unless otherwise approved by the Department in response to a written request from you, the DDMS must cease operation, and all disaster debris must be removed from the site by 11/21/2022

The Department has also prepared a guidance document on the establishment, operation and closure of a DDMS for disaster debris. This guidance includes recommended practices, which you are expected to follow as much as practicable, as well as additional requirements from the Order. A copy of this guidance document is available on the DEP website at https://floridadep.gov/waste/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure. This guidance is not a substitute for federal requirements and guidance, including those from the Federal Emergency Management Agency (FEMA).

If you have any questions or comments on this authorization letter, or if you require additional time to operate your DDMS, please feel free to contact Renee Kwiat by E-mail at renee.kwiat@floridadep.gov or by phone at (239) 344-5673. In order to provide better service to you, the Department is using electronic documents as much as possible. Please provide your E-mail address when replying.

Sincerely,

10/05/2022

Ryan Snyder South District Date

RS/rk

Cc: renee. kwiat@dep. state. fl. us, chad. fetrow@floridadep.gov, darryn. gipson@em. myflorida.com, kelly. chase@dos. myflorida.com, renee. kwiat@floridadep.gov

This letter generated by kwiat_r.

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Sent via email to: sonja.stephenson@colliercountyfl.gov

Date: May 17, 2023

SONJA STEPHENSON 3335 TAMIAMI TRAIL SUITE 101 NAPLES FL 34112

RE: 2023 - Pre-Authorization for Disaster Debris Management Sites (DDMS)

Dear SONJA STEPHENSON

This is to notify you that on May 17, 2023, the Department of Environmental Protection (the Department) received your request for pre-authorization of a disaster debris management site(s) (DDMS) for 2023. Disaster debris includes hurricane/storm-generated debris and all other types of disaster debris.

The Department has evaluated your request for a DDMS at the following location(s):

Site Name: COLLIER COUNTY - IMMOKALEE AIRPORT SITE-98127

Site Address: 199 AIRPORT ROAD (700 CR 846 EAST)

Immokalee, FL, 34142

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: IMMOKALEE SLF AND TRANSFER STATION (STOCKADE)-73114

Site Address: 700 STOCKADE RD @ CR846

Immokalee, FL, 34142

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 1-100582

Site Address: 160 AVIATION DRIVE-GATE 2W

Naples, FL, 34104

Waste Planned for Management: Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: CARNESTOWN TRANSFER STATION-73088

Site Address: 31201 TAMIAMI TRAIL EAST

Naples, FL, 34114

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - MANATEE PARK SITE-97990

Site Address: 1890 ROOST RD. Collier County, FL, 34114

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: CCPS MANATEE MIDDLE-98132

Site Address: 1920 MANATEE ROAD Naples, FL, 34114

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonia Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO 2-100583

Site Address: 160 AVIATION DRIVE-SW NORTH ROAD

Naples, FL, 34104

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - CCWSD-99137

Site Address: 825 39TH AVE NE

Naples, FL, 34120

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 3-100584

Site Address: WEST OF TERMINAL DRIVE 160 AVIATION DRIVE

Naples, FL, 34104

Waste Planned for Management: Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: MARCO ISLAND RECYCLING DROP-OFF (FKA MARCO ISLAND TRANSFER)-73044

Site Address: 990 CHALMER DR Marco Island, FL, 34145

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - 13968 VANDERBILT DR-104835

Site Address: 13968 VANDERBILT DR Naples, FL, 34110

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAPLES AIRPORT RECYCLING DROP-OFF (FKA NAPLES TRANSFER)-73105

Site Address: 2640 CORPORATE FLIGHT DR Naples, FL, 34104

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - SCHOOL BOARD SITE-97991

Site Address: 1010 18TH ST SE

Naples, FL, 34117

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: SCHOOL DISTRICT - PARKLANDS-107476

Site Address: LOGAN BLVD NORTH - PARKLANDS COLLIER COUNTY FOLIO NUMBER

66035000967 Naples, FL, 34119

Waste Planned for Management: Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAPLES AIRPOT AUTHORITY #8-106196

Site Address: WEST OF PATROIT WAY

Naples, FL, 34112

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY SCHOOL SITE-SCHOOL BOARD ELEMENTARY L-107080

Site Address: 2400 MOULDER DR

Naples, FL, 34120

Waste Planned for Management: Yard Trash

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY-CAMP KEAIS-107092

Site Address: 6875 ROCK SPRINGS RD

Immokalee, FL, 34142

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAPLES SANITARY LANDFILL-73046

Site Address: 3750 WHITE LAKE BLVD.

Naples, FL, 34117

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: CCWSD RESOURCE RECOVERY PARK-99069

Site Address: 3730 WHITE LAKE BLVD

Naples, FL, 34120

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 4-100585

Site Address: EAST OF TERMINAL ROAD 160 AVIATION DRIVE

Naples, FL, 34104

Waste Planned for Management: Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - COLLIER FAIRGROUNDS SITE-98134

Site Address: 751 39 AVENUE NE

Naples, FL, 34120

Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 5-100586

Site Address: ENTERPRISE AVE & WEST OF CORPORATE FLIGHT DRIVE 160 AVIATION DRIVE

Naples, FL, 34104

Waste Planned for Management: Yard Trash

On-Site Contact: Sonja Stephenson

(239) 252-8073, sonja.stephenson@colliercountyfl.gov

DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Unless you receive a subsequent notification from the Department concerning the status of these sites, you may consider them pre-authorized as disaster debris management sites.

In the event of a major storm event or other disaster which results in the Department issuing an Emergency Final Order (the Order) for your county, you may begin using a temporary DDMS as necessary, while also requesting issuance of a field authorization from the Department. Once activated, a DDMS is subject to the following conditions, in addition to the requirements of the Order and Florida Statute 403.7071:

1) The Department must be notified when the site is opened and begins accepting debris, and when the site is closed and all debris has been removed;

- 2) Standing water must not be allowed to accumulate in or within 50 feet of areas used to store or process disaster debris;
- 3) Access must be controlled to prevent unauthorized dumping and scavenging;
- 4) A DDMS must have spotters to correctly identify and segregate waste types for appropriate management;
- 5) Once the site is open, a spotter must be located in the area where the waste is being deposited in order to spot and remove prohibited waste items;
- 6) A DDMS is limited to managing the waste identified above for each site; any putrescible waste received at the DDMS must be removed within 48 hours, and all other types of prohibited waste should be managed in accordance with the guidance document (see link below);
- 7) Unless otherwise approved by the Department in response to a written request from you, the DDMS must cease operation and all disaster debris must be removed from the sites on or before the expiration date of an Order that has been executed by the Department, unless it is modified or extended by further authorization.

Failure to comply with the conditions of the field authorization, or failure to adequately close a site by the required closure date, may result in enforcement action by the Department.

The Department has also prepared a guidance document on the establishment, operation, and closure of a DDMS for disaster debris. This guidance document includes recommended practices, which you are expected to follow as much as practicable, as well as additional requirements from the Order. A copy of this guidance document is available on the DEP website

https://floridadep.gov/waste/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure

This guidance is not a substitute for federal requirements and guidance, including those from the Federal Emergency Management Agency (FEMA).

Site 34 – Crop Production Services, Inc.

November 20, 2020

Jimmy Jara

Jimmy.Jara@cpsagu.com.com

RE: In-Compliance Letter

Crop Production Services

116 Jerome Dr

Immokalee, FL 33934 **DEP Facility # 9602496**

<u>Collier County – Storage Tanks</u>

Dear Mr. Jara:

A storage tank inspection and file review were conducted at the above noted facility on or about **November 19, 2020**, by the Collier County Solid & Hazardous Waste Management Division on behalf of the Florida Department of Environmental Protection. Based on the information provided during and following the inspection, the facility was determined to be in compliance with the Department's storage tank rules and regulations. A copy of the inspection report is attached for your records.

The Department appreciates your efforts to maintain this facility in compliance with state and federal rules. Should you have any questions please contact Nereida Hernandez at (239) 252-8475 or by e-mail at Nereida.Hernandez@CollierCountyFL.gov.

Sincerely,

Nereida Hernandez

Environmental Specialist

Collier County Public Utilities Department

Solid and Hazardous Waste Management Division

Enclosure: Inspection Report

DEPARTMENTAL DECILIE

Florida Department of Environmental Protection

Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400

Division of Waste Management Petroleum Storage Systems

Storage Tank Facility Routine Compliance Site Inspection Report

Facility	Inform	ation:

Facility ID: 9602496 County: COLLIER Inspection Date:11/19/2020

Facility Type: M - Agricultural

Facility Name: CROP PRODUCTION SERVICES-IMMOKALEE # of inspected ASTs: 2

116 JEROME DR

IMMOKALEE, FL 33934 Mineral Acid Tanks: 0

Latitude: 26° 25' 11.1722" Longitude: 81° 24' 43.5082"

LL Method: DPHO

Inspection Result:

Result: In Compliance

Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

Storage Tank Program Office and Phone Number

Nereida Hernandez

Inspector Name

Jimmy Jara

No Signature

Representative Name

Inspector Signature Principal Inspector

COLLIER COUNTY SOLID & HAZ WASTE MGMT

1. Idud

DEPT

Representative Signature

CROP PRODUCTION SERVICES-IMMOKALEE

USTs: 0

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

Financial Responsibility:

Financial Responsibility: EXEMPT-NOT REQUIRED

Insurance Carrier:

Effective Date: 05/14/2018 Expiration Date: 05/14/2023

Reviewed Records

Record Category	Record type	From Date	To Date	Reviewed Record Comment
Two Years	Monthly Maint. Visual Examinations and Results	05/07/2018	11/16/2020	Weekly

Areas of Concern:

Type: Area of Concern Rule: 62-762.501(1)(f)

Violation Text: Exterior portions of tanks and integral piping not protected from external corrosion,

deterioration or degradation for shop fabricated tank systems.

Explanation: Minor corrosion on piing

Corrective Action: Corrosion to metal components must be maintain by periodic maintenance.

Violation Photos

Added Date 11/20/2020

Corrosion on pipng

Inspection Comments

11/20/2020

Compliance inspection scheduled/outreach by e-mail on October 28, 2020.

No open violation or discharge found at time of the inspection.

On November 19, 2020, Nereida Hernandez from Collier County met with Mr. Jimmy Jara to conduct the Compliance Inspection.

This facility consists of two (2) registered/regulated in service aboveground storage tanks (ASTs).

Tank #1 – 10,000 gallons (Citrus oil mixed with insectide)

Tank #2 – 10,000 gallons (Citrus oil mixed with insectide)

EQUIPMENT:

TANKS: Two (2) single-walled steel tanks are used to store citrus oil (mixed). The tanks are manifold together and located within a concrete secondary containment with roof. The exterior coating of the tanks appears to

Facility ID: 9602496

be in satisfactory condition. No dripping/leaking issues were observed during the inspection. The system is properly labeled. Corrosion of metal components must be minimized by periodic maintenance.

SPILL CONTAINMENT - Consists of tight fill, fill port located within the secondary containment.

OVERFILL PROTECTION – The fill port is located within a secondary containment which provides for overfill protection. The system is also equipped with a Krueger gauge.

PIPING – Consists of a single-walled piping not in contact with the soil and located within the secondary containment. Except for minor corrosion, the piping was observed in satisfactory. Corrosion of metal components must be minimized by periodic maintenance.

DISPENSER/ HOSES/NOZZLES - The system consists of one dispenser with hose located within the secondary containment.

RELEASE DETECTION: The facility conducts monthly visual inspections of visible/exposed tank components including; tank coating, secondary containment, hoses, and nozzles. The system is located within a concrete secondary containment that provides for overfill and release protection. The secondary containment was observed in satisfactory condition at time of inspection.

DOCUMENTS REVIEW:

PLACARD: The Placard expiration date is June 30, 2021. Storage tank registration fees are due to the Department each year by July 1. Ensure that your contact information is up to date with the Department in order to receive updates concerning your annual registration fees. Once fees are paid, you must print a copy of your placard from the Department's website: http://www.fldepportal.com/go/submit-registration/.

FINANCIAL RESPONSIBILITY: Tanks used to store non – petroleum products are not required to have insurance.

MONTHLY VISUAL INSPECTION REPORT: Monthly visual inspections of visible/exposed tank components are conducted weekly. Period reviewed: May 7, 2018 to November 16, 2020 (last visual inspection).

ANNUAL OPERABILITY TEST/ OVERFILL AND RELEASE DETECTION: Not required. The tanks and components are located within a concrete secondary that provides for overfill and release detection. However, "the secondary containment shall be: "impervious to the regulated substances being stored in the storage tank system and able to withstand deterioration from external environmental conditions". For the Krueger Gauges, the manufacturer recommends to verify their operability ever six months.

GENERAL REMINDERS:

Incident investigations must be initiated within 24 hours. If within 72 hours of discovery the investigation does not confirm that a discharge did not occur, then the incident must be reported to the contracted county. All positive responses of release detection devices (such as alarms) must be investigated and a determination made as to whether a discharge occurred. Records of all incidents must be maintained along with the incident investigation findings for inspection by the Department or contracted county.

Repairs, Operation and Maintenance: Storage tank system equipment shall be maintained in sound operational condition to reduce the likelihood of releases and incidents. Corrosion of metal components must be minimized by periodic maintenance.

Records generated on or after January 11, 2017, shall be kept for three years. Records generated before January 11, 2017, are required to be kept for two years, in accordance with rule 62-762.711, F.A.C.

Due to the COVID 19 pandemic, the facility representative was not required to sign the report.

The inspection report was provided by e-mail to: Jimmy Jara (Jimmy.Lara@cpsagu.com)

Inspection Photos

Added Date 11/20/2020

General view of the system

Added Date 11/20/2020

Dispenser

Added Date 11/20/2020

Containment Liner

Added Date 11/20/2020

Krueger Fuel Level Gauge

Added Date 11/20/2020

Product info

Added Date 11/20/2020

Piping

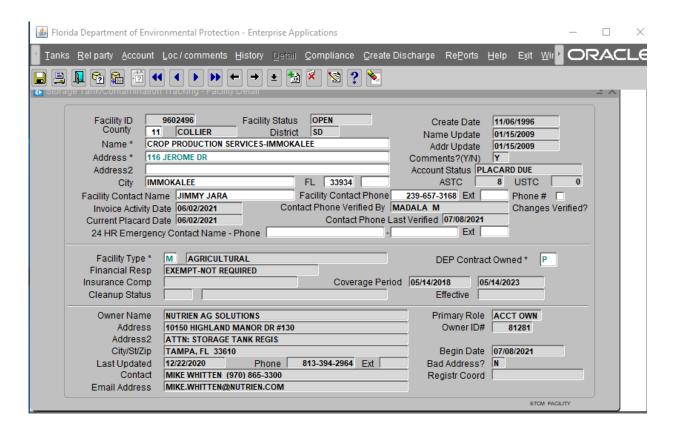
 From:
 Madala, Madhuri on behalf of tankregistration

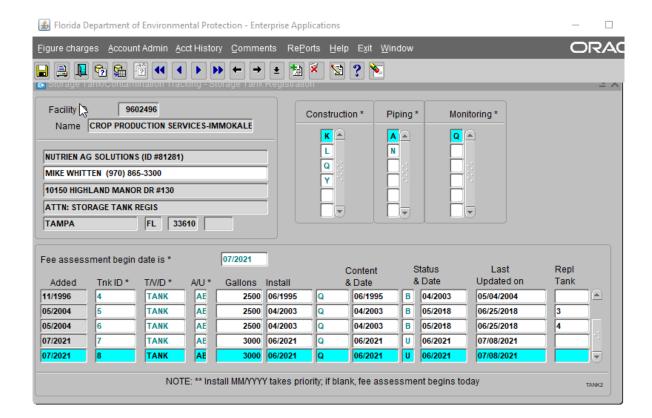
 To:
 tankregistration; MIKE.WHITTEN@NUTRIEN.COM

 Subject:
 FW:Fac id#9602496- Crop Production Services-Immokalee

Date: Thursday, July 8, 2021 12:21:40 PM

Attachments: image001.png


Facility Registration Form Immokalee Tresoil Tanks.pdf


image002.png image003.png

Per your request new Account owner/property owner information is updated for Fac ID#9602496.

New tanks are added as well.

You may access the DEP Business Portal to pay and print placard for STCM#81281 by following the below instructions.

http://www.fldepportal.com/go/

- Click on "Submit or Pay"
- · Click on "Registration/Notification"
- Click on "Storage Tank Registration"
- Enter: e-mail address and password for the e-mail you want your placard sent to. (You need to have already registered this e-mail account with DEP).
- If you have not already registered, please click on Register to proceed.
- · Click Yes for Do you have STCM#?
- Enter STCM#81281
- You can click on Pay online to pay invoice and the placard will be emailed.
- or
- Request Placard (if you simply need to print your placard).
- Enter the STCM#
- · Click: Search and Continue
- Select: Placard(s) you want printed and placard(s) will be emailed.

Thank you,

Madhuri Madala Waste Registration Department Of Environmental Protection PH:850-245-8834 Fax:850-412-0405 Madhuri.Madala@floridadep.gov

From: Michael Whitten <Mike.Whitten@nutrien.com>

Sent: Wednesday, June 30, 2021 5:57 PM

To: tankregistration < tankregistration@dep.state.fl.us>
Subject: Storage Tanks Crop Production Services-Immokalee

Michael L. Whitten
Safety, Health & Environmental Manager
Nutrien
10150 HighLand Manor Dr
Suite 130
Tampa, Fl 33610
Cell (813) 394-2964
Office (813) 630-1471
mike whitten@nutrien.com

For more information on Nutrien's email policy or to unsubscribe, click here: https://www.nutrien.com/important-notice
Pour plus de renseignements sur la politique de courrier électronique de Nutrien ou pour vous désabonner, cliquez ici: https://www.nutrien.com/avis-important

Site 56 – M & M Salvage and Used Auto Parts, Inc. (also known as Immokalee Waste Tire Site/Robert's Auto Salvage, W & T Salvage Yard, and Jay's Towing)

FLORIDA DEPARTMENT OF Environmental Protection

South District PO Box 2549 Fort Myers FL 33902-2549 SouthDistrict@FloridaDEP.gov Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

August 28, 2023

Nancy Macias
M & M Salvage & Used Auto Parts Inc
5615 Taylor Rd
Naples, FL 34109-1826
mmsalvage@embarqmail.com

Re: Compliance Assistance Offer

M & M Salvage & Used Auto Parts Inc

FLR05H006

Collier County – NPDES

Dear Nancy Macias:

A National Pollutant Discharge Elimination System (NPDES) Stormwater inspection was conducted at your site on June 12, 2023, under the authority of Section 403.091, Florida Statutes (F.S.). During this inspection, potential non-compliance was noted. The purpose of this letter is to offer compliance assistance as a means of resolving these matters.

Potential non-compliance of Chapter 403, F.S., Chapter 62-620, Florida Administrative Code (F.A.C.), and Chapter 62-621, F.A.C. were observed. Please see the attached inspection report for a full account of Department observations and recommendations.

We request you review the item(s) of concern noted in the attached inspection report and respond in writing within **15 days** of receipt of this Compliance Assistance Offer. Your response should include one of the following:

- 1. Describe what you have done to resolve the non-compliance or provide a time schedule to address the items of concern noted in the attached report. (See "Inspector Comments" on the final page of the report),
- 2. Provide information that either mitigates the concerns or demonstrates them to be invalid, or
- 3. Arrange for the case manager to visit your site to discuss the item(s) of concern.

M & M Salvage & Used Auto Parts Inc FLR05H006 Compliance Assistance Offer Page 2 of 2

It is the Department's desire that you are able to adequately address the items of concern so that this matter can be closed. Your failure to respond appropriately may result in the initiation of formal enforcement proceedings.

Please address your response and any questions to Christopher Wong of the South District Office at (239) 344-5613 or via e-mail at Christopher.Wong@FloridaDEP.gov. We look forward to your cooperation with this matter.

Sincerely,

Matt Czahor

Environmental Administrator

South District Office

Florida Department of Environmental Protection

Enclosure: Stormwater Inspection Report and Photo Log

Department of Environmental Protection Industrial Stormwater Inspection Report Form DWRM - WCAP - 20 - 043

Updated 08.01.22

Facility and Ins	pection Infor	mation								
Physical Locatio				Permit No	. ·	FLR05H00	06 Inspection Date	•	Jun 12, 2023	3
M & M Salvage & Used Auto Parts Inc						•				
106 Dixie Ave E	E		1	Effective		May 7, 202	•		10:05 AM	
	Immokalee , FL 34142-3552		Expiration	n Date:	May 6, 202			10:17 AM		
Mailing Address				District:		South	Hydrologic		Normal	
M & M Salvage	& Used Auto	Parts Inc		County:		Collier	Conditions:			
5615 Taylor Rd				Water Mg	gmt.	SFWMD	Latitude:	26 °		42.97 "
Naples		, FL	34109-1826	District:			Longitude:	81 6		51.63 "
Receiving Water				No. Empl		N/A	Size of Property		3	
Outfall To Collie	er County			No. Shifts	S:	N/A	Years at Location	on:	13	
Classification:	Not Applicat	ole	Other: N/A	Operating	g Hrs.:	N/A	No. of Outfalls:		1	
Industrial Activ	vity									
SIC Code:	Analytical	Reqmnt:	Sector:	Sector De	escriptio	on:				
5015	Ye	es	M	Automob	ile Salv	age Yards				
Company Repre										
On-Site Represe		I	<u>Title</u>	ĺ		Company	/Organization Name	i	<u>Teleph</u>	
N/A	A		N/A				N/A		N/A	4
Responsible Aut	hority (RA)		<u>Title</u>			Company	/Organization Name		Teleph	
Nancy M			Owner				ge & Used Auto Parts I	nc	(239) 597	
RA Email Addre		mmsalvag	e@embraqmail.con	1	17 to 17 survinge to ested ratio rate rate (257) 577 1765			7-4703		
Inspection Com		IIIII Sai vag	e(to)emoraqiiiameon	<u>-</u>						
This facility is cu		ve and for	sale							
Within 15 days of	of receipt of th	nis letter, co	ontact the department				cription, and any other	documentatio	on necessary to	o address
the CORRECTIV	VE ACTIONS	S that are li	sted in the inspector	r comments	on the l	last page of the r	report.			
W 4 C P	,•									
Weather Condi	tions									
Possible rain eve	ents in the pas	t 24 hours.								
Summary Evalu										
Overall Inspection	•	Out of Co	mpliance							
Section Ratings:			Ratings K	-						
S Permit				actory or In	_				ot Applicable	;
	n of Receivin	g Waters		ginal or Out		-		N/C = N	ot Covered	
	Site Review				Signifi	cantly Out of Co	ompliance			
M Plans/Mo			N = Not H	Evaluated						
Inspector Inform										
Inspector		T.	<u>Office</u>			i	<u>Email</u>	i i	Teleph	
Christophe	er Wong		South District C	Office		Christop	her.Wong@FloridaDE	P.gov	(239) 344	4-5613

Form DWRM - WCAP - 20 - 043 *Updated 08.01.22*

Permit

Is coverage under a Multi-Sector Generic Permit (MSGP) required?	Yes
If 'No,' why not?	Not Applicable
Has an MSGP been applied for?	Yes
If 'Yes,' is the permit Active?	Yes
If 'No,' why not?	Not Applicable
Comments:	
Rating: This item is rated as 'Satisfactory'.	

Condition of Receiving Waters

Is stormwater discharge apparent at the time of the inspection?	No
Is there evidence that there has been a discharge of polluted runoff to a regulated receiving water (past or	No
present)?	INO
If 'Yes', explain:	
N/A	
Comments:	
Rating: This item is rated as 'Satisfactory'.	

Facility Site Review - No Exposure Certification (NEX)

Are any	of the following materials or activities exposed to precipitation:	
1.	Areas for storage, maintenance, washing, or use of industrial machinery or equipment?	Not Applicable
2.	Materials or residuals from spills/leaks on the ground or in stormwater inlets?	Not Applicable
3.	Materials or products from past industrial activities?	Not Applicable
4.	Material handling equipment (except for adequately maintained vehicles)?	Not Applicable
5.	Loading, unloading, or transportation of materials or products?	Not Applicable
6.	Materials or products stored outdoors (except for final products intended to be used outside)?	Not Applicable
7.	Materials contained in open, deteriorated, or leaking storage containers such as drums, barrels, or tanks?	Not Applicable
8.	Materials or products that are handled/stored on road or rails owned/maintained by the facility?	Not Applicable
9.	Waste materials (except for waste in covered, non-leaking containers (e.g., dumpsters))?	Not Applicable
10.	Process wastewater application or disposal (unless otherwise permitted)?	Not Applicable
11.	Particulate matter or visible deposits of residuals from roof stacks and/or vents not otherwise regulated (e.g., under an air quality control permit) and evident in stormwater discharges?	Not Applicable
ommer	nts:	
acility	does not have a No Exposure Certification, therefore this section does not apply.	
actiffy	does not have a No Exposure Certification, therefore this section does not appry.	

FLR05H006

Form DWRM - WCAP - 20 - 043 *Updated 08.01.22*

Facility Site Review - Multi-Sector Generic Permit (MSGP)

Have the provisions of the Stormwater Pollution Prevention Plan (SWPPP) been implemented?	None
If 'Some' or 'None', explain what has not been implemented:	
SWPPP was not available for review the site was inactive.	
	1
Is there a potential for the discharge of polluted stormwater from the site to a regulated receiving water or	Yes
Municipal Separate Storm Sewer System (MS4)?	
Are Best Management Practices appropriate for the activities occurring on site to protect regulated surface	No
waters?	110

Best Management Practices (BMPs)

Area of Concern	Which BMPs are currently employed at the facility?	Are BMPs maintained consistent with the SWPPP?	Do BMPs appear sufficient to protect surface waters?
Vehicle / Equipment Wash and Rinse Areas	None on site.	No	No
Fueling Areas	No fueling is conducted on site.	No	No
Vehicle / Equipment Maintenance Areas	Could not enter site to inspect.	No	No
Outdoor Manufacturing Areas	No areas of concern at this time.	No	No
Outdoor Stockpile / Material Handling Areas	Cars are stored outdoors around the perimeter of the property. There are is a pile of tires stored outdoors. Automotive parts are seen stored in trunk beds.	No	No
Trash and Debris Areas	No trash cans on site; facility is inactive.	No	No
Loading / Unloading Transfer Areas	No areas of concern at this time.	No	No
Illicit Connections to SW System (e.g., floor drains)	None observed.	No	No
Chemical Storage Tanks (New and Used fluids)	Could not enter site to inspect.	No	No
Stormwater Treatment System	There is a canal along the North West side of the property. The property's stormwater discharge most likely flows into this canal.	No	No

Comments

Some automotive parts stored outdoors will need to ham BMPs implemented to for pollution control.

Rating: This item is rated as 'Marginal'.

Form DWRM - WCAP - 20 - 043 Updated 08.01.22

Plans/Monitoring - SWPPP

8	
Has a SWPPP been prepared for the facility?	No
Is the SWPPP available for review at the time of inspection?	No
Does the SWPPP appear accurate and up-to-date?	No
Does the SWPPP appear to meet the standards set forth in the MSGP (See the SWPPP Checklist for all applicable areas)?	No
Are applicable records kept for three (3) years from the date of collection?	No
Comments:	

Plans/Monitoring - Analytical Monitoring

<u> </u>	
Is the facility subject to analytical monitoring requirements?	No
If so, have the following conditions been met:	
- Has a monitoring schedule been identified?	No
- Has sampling been performed per the minimum requirements of the MSGP?	No
- Have the Discharge Monitoring Reports (DMRs) been submitted to the Department as required by the MSGP?	No
Has the facility reported any benchmark exceedances on DMRs submitted during the current permit cycle?	No
- If 'Yes', did the facility document a re-evaluation of the SWPPP measures and controls to address exceedances?	No
- Have all noted updates to measures and controls been implemented at the facility?	No
Note: Failure to amend and implement changes to the SWPPP as result of benchmark exceedance(s) constitutes a	violation of Parts IV

Note: Failure to amend and implement changes to the SWPPP as result of benchmark exceedance(s) constitutes a violation of Parts IV and IV.C. of the MSGP. Benchmark exceedance(s) may indicate a cause or contribution to water quality impairments.

Comments:

s the facility subject to compliance monitoring requirement	s?			No
f so, what frequency are the following activities conducted	at the facility	y:		
Activity	Conducted	Frequency of Activity		
- Wet Deck Storage	N/A	Not Applicable		
- Phosphate Fertilizer Manufacturing	N/A	Not Applicable		
- Asphalt Paving / Roofing Emulsions Production	N/A	Not Applicable		
- Cement Manufacturing	N/A	Not Applicable		
- Coal Pile Storage	N/A	Not Applicable		
re discharges sampled at least once per year and tested for ctivities?	the effluent	limited parameters specif	ied for the	Not Applicable
re the discharge samples subject to the numeric effluent lin	nitations pri	or to mixing with other d	ischarges?	Not Applicable
lave the compliance monitoring DMRs been submitted to the ear following monitoring? (e.g., results are due by March 3	1	,	,	Not Applicable
Comments:				

Form DWRM - WCAP - 20 - 043 *Updated 08.01.22*

Plans/Monitoring - Annual Comprehensive Site Compliance Evaluation (ACSCE)

Did the facility perform an ACSCE in the past 12 months?	No
Does the report contain the following:	
- Scope of the evaluation?	No
- Date of the evaluation?	No
- Any major observations relating to the implementation of the SWPPP?	No
Have the following conditions been met?	
- A determination of the effectiveness of the SWPPP?	No
- An assessment of compliance with the terms of the MSGP?	No
- A report documenting the results of the evaluation, and any required updates to the site / SWPPP?	No
Have the results of the ACSCEs been maintained for a minimum of three (3) years from the date of collection?	No
Comments:	

Plans/Monitoring - Quarterly Visual Monitoring (QVM)*

Has the facility performed quarterly visual examinations of stormwater (more specifically, in the last 4 quarters)? If so, have the following conditions been met? Reports include observations of color, odor, clarity, floating solids, settled solids, suspended solids, foam,	No
- Reports include observations of color, odor, clarity, floating solids, settled solids, suspended solids, foam,	
oil sheen, or other obvious indicators of stormwater pollution?	No
- Reports include time, date, location, and name of personnel collecting the sample?	No
- Reports include probable sources of any observed indicators of stormwater pollution?	No
Have the results of the QVM been maintained for a minimum of three (3) years from the date of collection?	No
Comments:	

*Sector S facilities do not have a QVM requirement, therefore this section does not apply to Sector S.

Rating: This item is rated as 'Marginal'.

Form DWRM - WCAP - 20 - 043 *Updated 08.01.22*

Plans/Monitoring - Industrial SWPPP Checklist

Section	Yes / No	Comments
Is the SWPPP current and up-to-date?	No	No SWPPP was available for review.
Pollution Prevention Team	No	
Description of Potential Pollutant Sources	No	
Drainage	No	
Inventory of Exposed Materials	No	
Significant Spills and Leaks	No	
Non-Stormwater Discharges	No	
Sampling Data	No	
Summary of Potential Pollutant Sources	No	
Measures and Controls	No	
Good Housekeeping	No	
Preventative Maintenance	No	
Spill Prevention and Response	No	
Inspections	No	
Employee Training	No	
Record Keeping	No	
Sediment and Erosion Control	No	
Management of Runoff	No	
Annual Comprehensive Site Compliance Evaluation	No	

Department of Environmental Protection Industrial Stormwater Inspection Report Form DWRM - WCAP - 20 - 043

Updated 08.01.22

Inspection Rating Determination Form

Point Total: 8 Out of Compliance						
Letter Type: 6-12 Compliance Assistance Offer Letter Letter to Send: Compliance Assistance Offer Letter	7					
S = Satisfactory $M = Marginal$ $U = Unsatisfactory$ $N = Not Evaluated$						
5 Satisfactory 141 Warginar C Offsatisfactory 14 Not Evaluated						
s Permit	Pts					
S Has a Permit or Exclusion from coverage, and NOI is located on site	1					
M Has applied for Permit or Exclusion from coverage, but it is not active	2					
U Has not obtained permit coverage, or does not qualify for a No Exposure Exclusion	10					
S Condition of Receiving Waters	Pts					
S Receiving water is <i>not</i> impacted from the offsite discharge of polluted runoff	1					
M Receiving water is <i>moderately</i> impacted from the offsite discharge of polluted runoff	3					
U Receiving water is <i>significantly</i> impacted from the offsite discharge of polluted runoff	6					
N No inspection completed, or access to discharge areas was not able to be obtained						
M Facility Site Review	Pts					
S Overall, the site poses little to no chance for the offsite discharge of polluted stormwater	1					
M Overall, the site poses a moderate chance for the offsite discharge of polluted stormwater	3					
U Overall, the site poses a significant chance for the offsite discharge of polluted stormwater	6					
N No inspection completed, or access to the facility was not able to be obtained	0					
M Plans/Monitoring	Pts					
SWPPP is complete. Required records are up to date and accurate	1					
M SWPPP is not more than 50% incomplete and/or not updated. Incomplete records, or inspections/ reports are no more than 12 months past due	3					
U No SWPPP, or SWPPP is more than 50% incomplete. No records within the previous 12 month period	6					
N No permit, or a SWPPP is not required	0					

Form DWRM - WCAP - 20 - 043 *Updated 08.01.22*

Single Event Violations

Check for Yes	Eval Area	Finding Code	SEV Code	Description
	RRPT	STM2	D0N11	The facility was discharging without an industrial stormwater generic permit.
>	RRPT	STM3	B0N12	The facility failed to conduct inspections according to the industrial stormwater generic permit.
<u> </u>	FACS	STM4	B0N18	The facility failed to implement the stormwater pollution prevention plan for the industrial stormwater generic permit.
<u><</u>	RRPT	STM5	B0N41	The facility failed to maintain records for the industrial stormwater generic permit.
<	RRPT	STM6	C0N11	The facility failed to monitor according to the industrial stormwater generic permit.
>	RRPT	STM7	B0N17	The facility failed to develop any or an adequate stormwater pollution prevention plan for the industrial stormwater generic permit.
<	FACS	STM8	BN19A	The facility failed to properly install/implement best management practices.
>	FACS	STM9	BN19B	The facility failed to properly operate/maintain best management practices.
<u><</u>	RRPT	STMA	E0N16	The facility failed to submit the required non-DMR report for the industrial stormwater generic permit.
	RPPT	STMB	D0N18	The facility did not submit a Notice of Termination once all stormwater discharges associated with industrial activities had ceased.

Inspector Comments

Rationale for Letter:

Within 15 days of receipt of this letter, contact the department, provide pictures, a narrative description, and any other documentation necessary to address the following CORRECTIVE ACTIONS:

- 1. Implement Best Management Practices (BMPs) to minimize the discharge of pollutants from outdoor storage of Engine Parts and Tires.
- 2. Provide a copy of the facility's Stormwater Pollution Prevention Plan (SWPPP) to the Department.
- 3. Provide copies of your Quarterly Visual Monitoring (QVM) and Annual Comprehensive Site Compliance Evaluation (ACSCE) records for the past three years to the Department.
- 4. If the site is to be inactive please remove all storage of pollutant sources and terminate the permit.

Concur with Recommendation? Comments: Yes No Comments:

Inspector Signature

Manager/Reviewer Signature

Signed: Aug 18, 2023

FLR05H006

Signed: Aug 25, 2023

Permit No.: FLR05H006

Facility/Site Name: M & M Salvage & Used Auto Parts Inc

Photo #: 1

 Date:
 Jun 12, 2023

 Time:
 10:07 AM

Captured by: Christopher Wong

Details:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit.

Permit No.: FLR05H006

Facility/Site Name: M & M Salvage & Used Auto Parts Inc

Photo #: 2

 Date:
 Jun 12, 2023

 Time:
 10:08 AM

Captured by: Christopher Wong

Details:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit.

Permit No.: FLR05H006

Facility/Site Name: M & M Salvage & Used Auto Parts Inc

Photo #: <u>3</u>

Date: Jun 12, 2023 Time: 10:09 AM

Captured by: Christopher Wong

Details:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit. The facility will need to remove the pile of old auto parts stored outdoors.

Permit No.: FLR05H006

Facility/Site Name: M & M Salvage & Used Auto Parts Inc

Photo #: <u>4</u>

 Date:
 Jun 12, 2023

 Time:
 10:09 AM

Captured by: Christopher Wong

Details:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit. The facility will need to remove the tires and any auto parts that are listed as a pollutant source.

Permit No.: FLR05H006

Facility/Site Name: M & M Salvage & Used Auto Parts Inc

Photo #: <u>5</u>

 Date:
 Jun 12, 2023

 Time:
 10:12 AM

Captured by: Christopher Wong

Details:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit. The facility will need to remove the tires and any auto parts that are listed as a pollutant source.

NOTICE OF INTENT TO USE MULTI-SECTOR GENERIC PERMIT FOR STORMWATER DISCHARGE ASSOCIATED WITH INDUSTRIAL ACTIVITY

(RULE 62-621.300(5), F.A.C.)

FLR05H006-003

This form is to be completed and submitted to the Department before use of the Multi-Sector Generic Permit for Stormwater Discharge Associated with Industrial Activity (MSGP) provided in subsection 62-621.300(5), F.A.C. The type of facility or activity that qualifies for use of this generic permit, the conditions of the permit and additional requirements to request coverage are specified in paragraph 62-621.300(5)(a), F.A.C. Note that additional requirements for requesting coverage include submittal of the applicable generic permit fee pursuant to Rule 62-4.050, F.A.C. Familiarize yourself with the generic permit and the attached instructions before completing this form. **Please print or type information in the appropriate areas below.**

Facility ID

ii ibertii territeri bert							
II. APPLICANT INFORMATION:							
A. Operator Name: M & M Salvage & Used Auto Parts Ir	B. Operator Sta	atus: O					
C. Address: 5615 Taylor Rd							
D. City: Naples		E. State: FL	F. Zip Code: 34109 1958				
G. Responsible Authority: Nancy Macias							
H. Responsible Authority's Phone No.: (239) 597-4703							
I. Responsible Authority's Fax No.:							
J. Responsible Authority's E-mail Address: mmsalvage@embarqmail.com							

III. FACILITY LOCATION INFORMATION:

IDENTIFICATION NUMBER:

A. Facility Name: M & M Salvage & Used Auto Parts Inc									
B. Street Address: 106 Dixie Ave E									
C. City: Immokalee					D. State: FL		E. Zip Code: 34142 3552		
F. County: Collier G. Latitude: 26 °25 '					2.96 " Longitude: -81 ° 24 ' 51.62			"	
H. Is the facility located on Indian Country Lands? Yes No I. Water Management District: SFWMD									
J. Facility Contact: Janet Marie McQuinn				K. Phone No.: (239) 657-5220					
L. Fax No.: M. E-n				E-mail Address: mmsalvage@embarqmail.com					

A. SIC or Designated Activity Code(s)				Primary: 5015			Secondary:		
B. Monitoring code (1, 2, 3, or 4): 2				C. Will construction be conducted			d for storm	water controls? Yes V No	
D. Other Existing Permits ERP No.:				1	Wast	tewater Permi	it No.:	Other (specify):	
V. DISCI	HARGE I	NFORM	ATION						
A. MS4 O	perator Na	me: Collie	er County - FLF	R04E037					
				B. Dis	charge Lo	cation(s):			
Outfall		Latitud	e		Longitud	e	D		
No.	Deg.	Min.	Sec.	Deg.	Min.	Sec.		Receiving Water Name	
	26	25	42.9693	-81	24	51.6273			
accordance submitted. gathering th	ler penalty with a sys Based on a e informat that there a	of law th tem design my inquiry tion, the ir are signifi	ned to assure y of the person aformation sucant penaltie	that qualifi on or persor obmitted is,	ed person ns who ma to the bes	nel properly a nage the system t of my know	gather and em or thos ledge and	my direction or supervision in evaluate the information e persons directly responsible for belief, true, accurate and complete the possibility of fine and	
Responsib	le Authori	ty Name a	and Official T	Title (Type	or Print):				
Nancy Macia	as, Nancy N	/lacias							
Nancy Ma	cias						May 04,	2020	
Responsible	Authority	/ Signatur	 e:				Date Signed:		

¹ Signatory requirements are contained in Rule 62-620.305, F.A.C.

INSTRUCTIONS – DEP FORM 62-621.300(5)(b) NOTICE OF INTENT (NOI) TO USE MULTI-SECTOR GENERIC PERMIT FOR STORMWATER DISCHARGE ASSOCIATED WITH INDUSTRIAL ACTIVITY (MSGP)

Who Must File an NOI:

Federal law at 40 CFR Part 122 prohibits point source discharges of stormwater associated with industrial activity to waters of the United States without a National Pollutant Discharge Elimination System (NPDES) permit. Under the State of Florida's delegated authority to administer the NPDES program, operators that have stormwater discharge associated with industrial activity to surface waters of the State must file for and obtain either coverage under an appropriate generic permit contained in Chapter 62-621, Florida Administrative Code (F.A.C.), or an individual permit issued pursuant to Chapter 62-620, F.A.C.

Where to File an NOI:

The Department encourages the electronic submission of NOIs for coverage under this generic permit through the NPDES Stormwater Program's electronic permitting application available at

http://www.dep.state.fl.us/water/stormwater/npdes/. As an alternative, NOIs may be submitted by paper copy to the following address:

NPDES Stormwater Notices Center, MS #2510 Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Part I – Identification Number:

Enter the facility's DEP identification number (generic permit coverage number) if known. If an ID number has not yet been assigned to this facility, leave this item blank.

Part II - Applicant Information:

<u>Item A.:</u> Provide the legal name of the person, firm, public organization or any other entity that operates the facility described in this application. The operator of the facility is the legal entity which controls the facility's operation rather than the plant or site manager. The name of the operator may or may not be the same as the name of the facility.

Items B.: Enter the appropriate one letter code from the list below to indicate the legal status of the operator of the facility:

F = Federal; S = State; P = Private; M = Public (other than federal or state); O = Other

Items C.- F.: Provide the complete mailing address of the facility operator, including city, state and zip code.

Items G. - J.: Provide the name, telephone and fax number (including area code) and e-mail address of the person authorized to submit this application on behalf of the facility operator. This should be the same person as indicated in the certification in Part VI.

Part III – Facility Location Information:

Items A. - E.: Enter the facility's official or legal name and complete street address, including city, state and zip code. Do not provide a P.O. Box number as the street address.

<u>Item F.:</u> Enter the county in which the facility is located.

<u>Item G.:</u> Enter the latitude and longitude of the approximate center of the facility.

Item H.: Indicate whether the facility is located on Indian Country Lands.

<u>Item I.:</u> Enter the appropriate five or six letter code from the list below to indicate the Water Management District the facility is located within:

NWFWMD = Northwest Florida Water Management District SRWMD = Suwannee River Water Management District SFWMD = South Florida Water Management District SWFWMD = Southwest Florida Water Management District SJRWMD = St. John's River Water Management District

Items J. - M.: Give the name, telephone and fax number (including area code) and e-mail address of the person who is thoroughly familiar with the operation of the facility, with the facts reported in this application and who can be contacted by the Department if necessary.

Part IV – Facility Activity Information:

Item A.: List, in descending order of significance, up to two 4-digit standard industrial classification (SIC) codes that best describe the principal products or services provided at the facility identified in Part III. For industrial activities defined in 40 CFR 122.26(b)(14)(i)-(xi) that do not have SIC codes that accurately describe the principal products produced or services provided, use the appropriate two letter code from the list below:

- HZ = Hazardous waste treatment, storage or disposal facilities, including those that are operating under interim status or a permit under subtitle C of RCRA [40 CFR 122.26(b)(14)(iv)].
- LF = Landfills, land application sites and open dumps that receive or have received any industrial wastes, including those that are subject to regulation under subtitle D of RCRA [40 CFR 122.26(b)(14)(v)].
- SE = Steam electric power generating facilities, including coal handling sites [40 CFR 122.26(b)(14)(vii)].
- TW = Treatment works treating domestic sewage or any other sewage sludge or wastewater treatment device or system used in the storage, treatment, recycling and reclamation of municipal or domestic sewage [40 CFR 122.26(b)(14)(ix)].

<u>Item B.:</u> Enter the appropriate 1-digit monitoring code for the facility from the list below. The monitoring requirements for the facility are contained in the MSGP.

- 1 = Not subject to monitoring requirements under the conditions of the permit.
- 2 = Subject to monitoring requirements and required to submit data.
- 3 = Subject to monitoring requirements but not required to submit data.
- 4 = Subject to monitoring requirements but submitting certification for monitoring exclusion.

<u>Item C.:</u> Indicate whether any construction will be conducted to install or develop stormwater controls.

<u>Item D.:</u> Provide the permit number for any existing state, federal or local environmental permit(s) issued to the facility, including any environmental resource permit (ERP) issued by the DEP or the Water Management District; any DEP wastewater facility permit; and any EPA-issued NPDES permit.

Part V – Discharge Information:

Item A.: If the facility discharges stormwater associated with industrial activity to a municipal separate storm sewer system (MS4), enter the name of the operator of the MS4 (e.g., municipality name, county name). (See Chapter 62-624, F.A.C. for the definition of an MS4.)

<u>Item B.:</u> If the facility discharges stormwater associated with industrial activity directly to receiving water(s), list each outfall; the receiving water of each outfall; and the latitude and longitude of each outfall, if available.

Part VI – Certification:

Type or print the name and official title of the person signing the certification. Sign and date the certification.

Section 403.161, F.S., provides severe penalties for submitting false information on this application (NOI) or any reports or records required by a permit. There are both civil and criminal penalties, in addition to the revocation of permit coverage for submitting false information.

Rule 62-620.305, F.A.C., requires that the application (NOI) and any reports required by the permit to be signed as follows:

- A. For a corporation, by a responsible corporate officer as described in Rule 62-620.305, F.A.C.;
- B. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or
- C. For a municipality, state, federal or other public facility, by a principal executive officer or elected official.

Site 65 – University of Florida IFAS Southwest Florida Research and Education Center (SFREC) 2685 SR 29

February 6, 2024 Roger McGill *UF SWREC* FRMC@ufl.edu

RE: Return To Compliance

UF SWERC, Highway 29 N., Immokalee, FL 34142

DEP Facility ID#: 11/8735911 Collier County— Storage Tanks

Dear Storage Tank Owner/Operator:

Collier County Solid and Hazardous Waste Management Division (SHWMD), on behalf of the Florida Department of Environmental Protection (Department), personnel performed a storage tank compliance inspection on April 17, 2023. Based upon documentation provided on July 20, 2023, the facility was determined to have returned to compliance with the Department's Storage Tank rules and regulations.

The Department appreciates your efforts to maintain this facility in compliance with state and federal rules. Should you have any questions or comments, please contact Jay Standiford at 239-207-0981 or James.Standiford@colliercountyfl.gov.

Sincerely,

James A. Standiford IV (Jay) Environmental Specialist I

Hazardous Materials/Pollutant Storage Tanks Environmental Compliance

Collier County Solid and Hazardous Waste Management Division

FDEP ROUTINE INSPECTION (AST-	
Facility Name: UhiVersity of Florida - SWREC	
Facility Address: Huy 29 N. Imms Kalop,	FL 34/42
FDEP Facility ID: 873591/	V V V
Inspector: Jay Stantised	Collier County SHWMD
Facility Representative: Price Ganon	Date: 1/13/23 @123
Inspection report emailed to: Reger McGII (FRM	(PUPLALU)
FINANCIAL RESPONSIBILITY / RELEASE	Milet In a state of the
FDEP Placard fees paid / posted or available at site: Y FDEP Registration correct: Y N N/A	LED RELEASE DELECTION DRVIN
FR Financial Responsibility kept for 3 years: Y N Insurance Company: EXempt Dates:	
FR Certificate of Financial Responsibility Forms (Eff. 1/11/	/17): Y N
MVI Visual Release Detection conducted (35 days, dates in Dates: 6/1/10/16/13 MVI / ERD Electronic Release Detection conducted month Dates:	nly: Y N N/A
MVI Release Detection records kept for 3 years: Y N	N/A
Release Detection checks include required items: Y N Release Detection checks had no positive responses: Y	N/A N N/A
Open Discharges: Y NN/A FIRST Facility photo/map/aerial up to date: Y FIRST Facility contact with e-mail address up FIRST Facility component list with EQ or Re FIRST Scheduling / Outreach uploaded: Y	p to date: Y _N
COMMENTS:	District Company
Marison Brothers level Mork of	Bauges - BAKAn
D D M STATE	Molecuse Detections of the
	COMMINTS
4-4209 1 S. 1184 4 3 199	my har tild med green
	*

_		-		~
T			N	€.
	EST			u.

	CTION DEVICES		· 1 N-		
Type(s): _	Sturk More	May	A STATE OF THE STATE OF	0 1 134	3 - 391
Dates:	741,67	and some	T. M.	1 / 1	Telebra In
			. \	1 13 1	il glant to
CRAWTER on	mia alter			A STATE OF THE STA	The terrore
	ENTION DEVICE				
Type(s): _	Morrison 1	Suffers ?	Fort les	of Gauses	-1
	Dan't work				
4	ver the la	of June 11	est C	17 1 121 1 1	12.11
(a.) W.				were the sound	
LLD RELEASE D	ETECTION DEVI	CES tested an	nually: Y	N N/A	- Sisteman Although
Dat	es: Novi may	NY	for 3 years	ropsi vilidizace	R Hipasoid Resp
Shear valves tested	l annually: Y	N N/A	/		Pairs
Dates:	1.5	eta 7 Mei) Lie	and virtuities	Tomora Missing	Floretications 2.3
Dates:					100
	- Av				etsek ombed fyr ombed fyr ombed
	NVN	1 37 m	en boriuper	state i doude	
COMMENTS:	JMENT.	1 37 m	en boriuper gen svihoo	state i doude	r nomer tell segsia Produce Describ
COMMENTS:	. /	MAY ANY	equired to confee scap 2 - 12 L	chade j slode checks ned no checks ned no	r romantali segsia Produciali segsia Popia
SPILL CONTAIN	Double wall	Remote	d sq fill box	Dike Field	r romanial persis contralial mestis erita erita
SPILL CONTAIN Type: Single wall Construction: Met	Double wall	Remote FRP I	fill box	Dike Field	r romanial persis contralial mestis erita erita
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig	Double wall allic Poly ht (cam-lock)	Remote FRP I	fill box	Dike Field	r romanial persis contralial mestis erita erita
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig. Product Label: Y Liquids removed /	Double wall allic Poly ht (cam-lock) N/dry: Y N	Remote FRP I OPV I	fill box	Dike Field	CANALAN SERVICE CONTRACTOR CONTRA
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig Product Label: Y Liquids removed / No cracking, defect	Double wall allic Poly ht (cam-lock) N N/dry: Y N ts, or holes: Y L	Remote FRP I OPV I A	fill box Hybrid oose (nozzle	Dike Field	CANALAN SERVICE CONTRACTOR CONTRA
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig Product Label: Y Liquids removed / No cracking, defect Remote Fill - Check	Double wall allic Poly ht (cam-lock) N N/dry: Y N ts, or holes: Y L	Remote FRP I OPV I A	fill box Hybrid oose (nozzle	Dike Field	CANALAN SERVICE CONTRACTOR CONTRA
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig Product Label: Y Liquids removed / No cracking, defect Remote Fill - Check Release Detection	Double wall allic Poly ht (cam-lock) N N/dry: Y N ts, or holes: Y L	Remote FRP I OPV I A	fill box Hybrid oose (nozzle	Dike Field	CANALAN SERVICE CONTRACTOR CONTRA
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig Product Label: Y Liquids removed / No cracking, defect Remote Fill - Check Release Detection	Double wall allic Poly ht (cam-lock) N N/dry: Y N ts, or holes: Y L k Valve & Isolation: Visual L	Remote FRP I OPV I A n Valve presen	fill box Hybrid oose (nozzle	Dike Field	elegan Dalaman septo
SPILL CONTAIN Type: Single wall Construction: Met Fill Method: Tig Product Label: Y Liquids removed / No cracking, defect Remote Fill - Check Release Detection	Double wall allic Poly ht (cam-lock) N N/dry: Y N ts, or holes: Y L	Remote FRP I OPV I A n Valve presen	fill box Hybrid oose (nozzle	Dike Field	elegan Dalaman septo

Location: Aboveground Sub-generator Marine Aviation Type: Double wall Single wall Compartmented Diked Construction: Single wall steel Double wall steel Double wall steel Diked Construction: Single wall steel Double wall steel ConVault AST flammable / combustible tank type: UL 142 UL 2080 UL 2085 N/A Contents: Diesel Unleaded Premium AV Gas Jet Fuel Used Oil New Oil Other Purpose: Vehicular Fueling Generator Generator Day Tank Water Treatment Sub-Pump Fire Pump Aviation AST CORROSION under control: Y N N/A AST Product Type LABELING present: Y N N/A AST NFPA 704 placard present: Y N N/A AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Located greater than 500 feet from a potable well: Y N N/A (wet / dry) COMMENTS:	
Type: Double wall Single wall Compartmented Diked Construction: Single wall steel Double wall steel ConVault AST flammable / combustible tank type: UL 142 UL 2080 UL 2085 N/A Used Oil Other Used Oil New Oil Other Generator Day Tank Water Treatment Sub-Pump Fire Pump Aviation AST CORROSION under control: Y N N/A AST Product Type LABELING present: Y N N/A AST NFPA 704 placard present: Y N N/A AST NFPA 704 placard present: Y N N/A AST Ollision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A (wet / dry) COMMENTS: **Doo gallon Spiff** (1,000 \$50 F 1,000 Roll) AST No flammable Alarm Visual gauge OPV Stick & Chart Dike Field AST has Audible Alarm Visual Gauge (audible or visible) at fill: Y N N/A	
Construction: Single wall steel Double wall steel ConVault AST flammable / combustible tank type: UL 142 UL 2080 UL 2085 N/A Contents:	Type: Double wall Single wall Compartmented Diked
AST flammable / combustible tank type: UL 142 UL 2080 UL 2085 N/A	
Contents: Diesel	
Used Oil New Oil Other Purpose: Vehicular Fueling Generator Generator Day Tank Water Treatment Sub-Pump Fire Pump Aviation AST CORROSION under control: Y N N/A AST Product Type LABELING present: Y N N/A AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: 2000 gallon Spl. (1000 DSC F 1,000 ROL) OVERFILL PREVENTION: Type(s): Audible Alarm Visual gauge OPV Stick & Chart Dike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	
Purpose: Vehicular Fueling Generator Generator Day Tank Water Treatment Sub-Pump Fire Pump Aviation AST CORROSION under control: Y N N/A AST Product Type LABELING present: Y N N/A AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: 3000 gallor Spl. f (1000 BSC F 1,000 Roc) AST Type(s): Audible Alarm Visual gauge OPV Stick & Chart Dike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	
Water Treatment Sub-Pump Fire Pump Aviation AST CORROSION under control: Y N N/A AST Product Type LABELING present: Y N N/A AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS:	Purpose: Vehicular Fueling Generator Generator Day Tank
AST CORROSION under control: Y N N/A AST Product Type LABELING present: Y N N/A N/A AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: John Spirit (1,000) SSI F 1,000) ROL AST	Water Treatment Sub-Pump Fire Pump Aviation
AST Product Type LABELING present: Y N N/A AST NFPA 704 placard present: Y N N/A AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: 3000 gallar Spf. f (1,000 DSC F 1,000 ROL) OVERFILL PREVENTION: Type(s): Audible Alarm Visual gauge OPV Stick & Chart Dike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	AST CORROSION under control: Y N N/A
AST NFPA 704 placard present: Y N N/A AST ANCHORED & GROUNDED: Y N N/A N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: John Spl. f (1000) SC F 1,000) AST	AST Product Type LABELING present; Y V N N/A N/A
AST ANCHORED & GROUNDED: Y N N/A AST Collision Protection present if impact possible: Y N N/A AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: 2000 51 M Spl. F (1,000 DSC F 1,000 ROL) OVERFILL PREVENTION: Type(s): Audible Alarm Visual gauge OPV Stick & Chart Dike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	AST NFPA 704 placard present: Y N N/A
AST No flammable materials used, i.e. PVC caps: Y N N/A AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS: Jooo gallon Splif (1,000 850 F 1,000 Rov) AST Type(s): Audible Alarm Visual gauge OPV Stick & Chart Dike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	AST ANCHORED & GROUNDED: Y V N N/A
AST No flammable materials used, i.e. PVC caps: Y \ N \ N \ N/A \ AST Setback 3 feet from other tanks and walls: Y \ N \ N/A \ AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y \ N \ N/A \ Located greater than 500 feet from a potable well: Y \ N \ N/A \ Release Detection: Visual \ Mechanical gauge \ Sensor \ Vacuum \ N/A \ (wet / dry) COMMENTS: \[1000 gallan split (1000 \ 350 \ F 1,000 \ Roll) \ AST \] OVERFILL PREVENTION: Type(s): Audible Alarm \ Visual gauge \ OPV \ Stick & Chart \ Dike Field \ AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y \ N \ N/A \ \ \]	AST Collision Protection present if impact possible: Y N N/A
AST Setback 3 feet from other tanks and walls: Y N N/A AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS:	AST No flammable materials used, i.e. PVC caps: YN N/A
AST Flammable / Combustible tank meets setback requirements for buildings & property line listed in NFPA 30/30A tables: Y N N/A Located greater than 500 feet from a potable well: Y N N/A Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS:	AST Setback 3 feet from other tanks and walls: YN N/A
COMMENTS: Doo gallow Splif (1,000 BSC & 1,000 Roll) AST	
Release Detection: Visual Mechanical gauge Sensor Vacuum AST Krueger Gauge or Manual Interstice checked: Y N N/A (wet / dry) COMMENTS:	listed in NFPA 30/30A tables: Y N N/A
AST Krueger Gauge or Manual Interstice checked: Y_N_N_N/A_ (wet / dry) COMMENTS: 2000 gallon Spl. f (1,000 850 F 1,000 Rvl) AST OVERFILL PREVENTION: Type(s): Audible Alarm Visual gaugeOPV Stick & ChartDike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y_N_N/A	Located greater than 500 feet from a potable well: YN N/A
OVERFILL PREVENTION: Type(s): Audible Alarm Visual gaugeOPV Stick & ChartDike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	AST Krueger Gauge or Manual Interstice checked: YN N/A (wet / dry)
OVERFILL PREVENTION: Type(s): Audible Alarm Visual gaugeOPV Stick & ChartDike Field AST has Audible Alarm & Visual Gauge (audible or visible) at fill: Y N N/A	
Audible Alarm test button works: Y N N/A OPV if tight fill: Y N N/A Inches to Gallons Chart: Y N N/A LLD present: Y N N/A COMMENTS: Compathments Stuck Prior to filling.	SOLATION VALAE located to close to the cark shall as possible? Y N N A

VENTING:	
AST Emergency Vent on both primary and secondary: Y N N/A	1,000 apr
AST Secondary by design, i.e. concrete, diked. Y N_ N/A	
AST Vents 12 foot above grade for Class I liquids: Y N N/A	
Class I liquids have Pressure/Vacuum cap: Y N N/A	
Vents not near windows or air intake: Y N N/A	
Vents for Class 1 Liquids extend through roof / not near eaves Y	N/A
Nothing in the vent line other than vent, i.e. ball check, gauge, etc. Y N	N/A
Manifolded vent piping only with similar fuels: Y N N/A	The state of the s
Vapor recovery present (required class I liquids >10,000 gallons): Y N	
Vapor recovery type: Dual point Co-Axial N/A	
AND PROPERTY OF A STATE OF A STAT	
COMMENTS:	
A V V The man water series were	AST School 3 feet
ent all ble falle ment serback requirements for buildings & property line	ASI Flagorouble 1
J. of ada, hendes, Y. a. N. J. No. A.	
PIPING: N/A	Licensed greater than
Type: Suction Processized 19892 20068 Included 1999	enitorall arealast
Type: Suction Pressurized	AST Keneger Conty
Containment: Single wall Double wall Both	
Material: Metallic FRP Thermoplastic	COMMENTS:
Aboveground piping is non-flammable/combustible, i.e. metallic: Y N	NIA
Metallic CORROSION control ok: Y N_ N/A	_ N/A
ISOLATION VALVE located as close to the tank shell as possible: Y N	N/A
Gravity head: Y N N/A	
Gravity head has solenoid or ANTI-SIPHON device & downstream of the iso	lation valve
Y N N/A	THE THEFT
Piping emerges from top of the tank for double wall: Y N N/A	Pypus). Audition
Solenoid is horizontal: Y N N/A	" storage and Table
Release Detection: Visual LLD Sensor at interstitial low point	Audible alsen son?
THE ROOM OF THE PROPERTY OF TH	not and Anddork
COMMENTS:	/ Englent, Vio
The Y had	Lickythillap etgan
AND THE RESERVE OF THE PARTY OF	
Mary State of the second secon	シャン・さんないディ
The state of the s	
Application of the Control of the Co	

DISPENSERS: N/A	
2 Dispensers with Fueling positions	
AST with dispenser on top is UL-2080 or UL-2085: YN N/A	
Hoses & whips not deformed, cracked, or weeping: YN	
Breakaways present for non-aviation/marina: Y N/A N/A	
Hold open clip removed for aviation/marina nozzles: Y N N/A	
Emergency stop located 20-100 feet from each dispenser and labeled: Y_	
Dispenser sumps present for underground piping: Y N N/A	
Dispenser sump construction: FRP Metallic Poly Multiple	N/A
Sensors properly located in dispenser sumps: Y N N/A	
Dispenser sumps are free of liquids: Y N N/A	
Meet setback requirements for table in NFPA 30A: YN/A	
Release Detection: Visual Sensors	
Shear valves installed on pressurized piping: Y N N/AN/A	
Shear valves anchored & appear to function properly: Y N N/A	
COMMENTS:	
	(refro
The second of th	
LEAKS / SPILLS OBSERVED: Y N	
Additional Comments or Summary:	
Chan Plantage and the second second	
FIRST Facility ple-ta/mep/agnal mys-	
1285) Parity purposed with containing the	
The Table of State of the Table	
Table to the same of the same	
CONTRACTOR OF THE SECOND CONTRACTOR OF THE SEC	

Site 67 - Collier Health Services (also known as Marion Fether Medical Center)

ment and omail request below. STCM #80683/FAC ID #9818091 FAC Name: COLLIER HEALTH SERVICES has been established. Tank ID#1 has been added.

Pursuant to Section 376.3077, F.S. the placard shall be displayed in plain view in the office, kinsk, or at another suitable location at the facility where the storage tank system For more information on the state of Florida Rule CH 62-952 which governs the abovegnound storage tanks, go to https://lennes.fluides.org/Catenasyteference.asg/Non-Ref-67/688.

Please do not heritate to contact me for further assistance. Stay safe.

Derkea B. Owete FDEP Division of Waste Management Waste Registration & Recycling Program Frauil: derbesoweticipil FendadEP gov Office: 850-245-8732 Switchboard: 850-245-8839 Work Houre: M-F 7:30um-3-30pm http://www.Hoppottal.com/go/

—Original Message—
From: David Mustes 'DMestes@HealthcareSWFL.org'Sent: Wesheesday, September 9, 2020 11:34 AM
To: tsakregistration 'tsakregistration@depotate.fl mc'Cc: Occar Valla COV/ling@HealthcareSWFL.org'Subject: RE: FAC ID#9818091 RE: Storage Tank Registr

David Maria.

David C12986.03d

David C12986

—Geginal Monage—
From Owns, Orbert Schrist, Owsteig FlusishDEP ger" On Behalf O'I unkerginntsinn
Smit Waltendry, Stgermber 9, 2020 1622 AM
To Drubt Munter O'Honorijflathshared/SWI-zerg- unkrapisersinn vinkregietnsinnigkepants fil na*
Salgest RE: FAC (D0981899) RE: Strangs Task Registration Form

Good morning David: The serry but the Install Date you entered in 11/6/2020. The Effective Date is 91/2020. The Effective Date for Status of Tank can not be before you install the tank. Oftentime, the Install Date and Effective Date is the same.

Also, if you look at the Status Code, "D" which you indicated means, that it is a data error. If the tank will be not in service, you should choose "U" for Status.

Date B. Oxfor
FIRE Photon of The Managemen
Fire Photon of The Managemen
Fire Photon of The Managemen
Fire Indian Assembly Indian Photon of The
— Original Messange—
From David Montes «DMontos@HealthcareSWFL.org»
Seat: Turoday, September 8, 2020 9-30 AM
Tot taskregistration «taskregistration@depatate.flus»
Ce Chear Villa «Offini@HealthcareSWFL.org»
Subject: RE: FAC ID##18091 RE: Storage Tark Registration Form

Thank you

The year of the problem of the probl

— Original Mossage—
Franc Own. Darker Derbien, Owned (S) Instability Pays's On Behalf Of unkergistension
Franc Own. Darker Derbien, Owned (S) Instability Pays's On Behalf Of unkergistension
Darker Derbien (S)
Franc Derbien (S)
Franc Owned
Please do not hesitate to contact me for further assistance. Stay safe.

Data B. Orde

THEP Dataset that Management

THEP Dataset that Management

THE Dataset that Management

1997 | 1997

— Original Monage—
Frem: David Mastes "Othentos@HashbasesWFL orgSent: Tucology, September 1, 2019 9-24 AM
Tet taskregistrians 'Undersong Sentengen 1, 2019 9-24 AM
Tet taskregistrians' teakregistrians' Galepotated Bas'
Ce: Otaca 'Villa-O'Villa@HashcassWFL orgSolgistri Ris Fack (1998/H109) Ris: Startege Task Registration Form
Good morning Derbea, thanks for your help here.

The status code should be U. The installation date will be around 11-6-2020.

.253Dhnp-2D3A-5F-5Fsecure-2D2Dweb.cisco.com-Bi3V2ntn97jx3B7ORR-2D5F-2D5Fjk5-ugnV-2526m-253Dn-5FkDPHF0Lv-5FxN7ZecukTlekklZnsxQF6DuvZeUd-5F8De-

Smit: Friday, August 28, 2020 1:36 PM Tre David Montes ("Montes@HealthcareSWFL.org/"; tankregistration https://depastate.fl.us/Subject: FAC ID#9818991 RE: Storage Tank Registration Form

Good afternoon: In order for me to add Tank ID#1 I would need the Install Date and also the appropriate Status Code. Please see pg 2 of the STRF attached to review the Codes. Thurst -Dorb

Date 18. Orace

THP Driving of Wash Management

The Application of

palanting reasons (2) 10 86 CO2 1 10 86 CO

20D whice case one 912 PV 20D Reg 1 15 BB ROO 16D 2 15 PB ROO 16D 2 PB ROO 16D2 PB ROO 16D

CONDINION TO THE This and also gifts a secondar gifts a secondar gifts a secondar gifts and also gifts a secondar gifts and also gifts a secondar gifts and also gifts a secondar gifts and gifts an

DEPARTMENTAL DECILIA

Florida Department of Environmental Protection

Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400

Division of Waste Management Petroleum Storage Systems

Storage Tank Facility Routine Compliance Site Inspection Report

of inspected ASTs: 1

Mineral Acid Tanks: 0

USTs: 0

		4 -
トつへけけ	/ Intorm	OtION:
racille	y Inform	IALIOII.
	, •	

Facility ID: 9818091 County: COLLIER Inspection Date:05/03/2022

Facility Type: Z - Other Regulated Facility Facility Name: COLLIER HEALTH SERVICES

1454 MADISON AVE W

IMMOKALEE, FL 34142

Latitude: 26° 26' 33.918" Longitude: 81° 25' 55.2216"

LL Method: DPHO

Inspection Result:

Result: Minor Out of Compliance

Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

Storage Tank Program Office and Phone Number

Nereida Hernandez

Inspector Name

Oscar Villa

No Signature

Representative Name

Inspector Signature Principal Inspector

COLLIER COUNTY SOLID & HAZ WASTE MGMT

1. Idua

DEPT

Representative Signature

COLLIER HEALTH SERVICES

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

Financial Responsibility:

Financial Responsibility: INSURANCE

Insurance Carrier: ACE AMERICAN INSURANCE COMPANY

Effective Date: 11/23/2021 Expiration Date: 11/23/2022

Overdue System Tests

Туре	Date Completed	Results	Reviewed	Next Due Date	Comment
Annual Operability - Overfill Protection			05/11/2022	12/15/2021	Test needed to the primary overfill device
Annual Operability - Release Detection			05/11/2022	12/15/2021	Test needed to the leak sensor

Completed System Tests

Туре	Date Completed	Results	Reviewed	Next Due Date	Comment
Annual Operability - Overfill Protection	12/15/2020	Passed	12/29/2020	12/15/2021	The overfill device is tested annually.
Annual Operability - Release Detection	12/15/2020	Passed	12/29/2020	12/15/2021	Rupture basin sensor is tested annually.
Integrity Test - Single- walled Spill Bucket	12/23/2020	Passed	12/29/2020	12/23/2030	Spill bucket is tested on install.

Reviewed Records

Record Category	Record type	From Date	To Date	Reviewed Record Comment
Three Years	Certificate of Financial Responsiblity	11/23/2021	05/11/2022	Part D & P
Three Years	Monthly Maint. Visual Examinations and Results	01/04/2021	05/02/2022	Inspected weekly

Violations:

Violation Text:

Explanation:

Type:	Violation
Significance:	Minor
Rule:	62-762.501(2)(e)3, 62-762.501(2)(e)3.a, 62-762.501(2)(e)3.b, 62-762.501(2)(e)4, 62-762.502(2)(e)4, 62-762.502(2)(e)4.a, 62-762.502(2)(e)4.b, 62-762.502(2)(e)5
Violation Text:	Failure to designate, register, or annually test primary overfill protection device,
Explanation:	System test to the designated primary overfill device due on December 15, 2021. An annual operability test shall be performed on the designated primary overfill protection device used to meet the Department's overfill protection requirement at intervals not exceeding 12 months to ensure proper operation.
Corrective Action:	Perform system test to the overfill equipment and send test results to the County inspector by email.
Type:	Violation
Significance:	Minor
Rule:	62-762.601(7), 62-762.602(7)

release detection devices shall be tested annually at intervals not exceeding 12 months

Annual operability testing of release detection systems not completed.

System test to the designated primary overfill device due on December 15, 202. All

Facility ID: 9818091

to ensure proper operation.1.

Corrective Action: Perform system test to the rupture basin/leak sensor and send test results by email to

the County inspector.

Inspection Comments

05/11/2022

Inspection scheduled by email on March 23, 2022.

On May 3, 2022, Nereida Hernandez from Collier County met with Mr. Oscar Villa and Jerry Cabrera, to perform the storage tank compliance inspection. The records were reviewed during the inspection.

No discharge or violations open at time of the inspection.

TANK – One (1) 1,575-gallon, double-walled sub-base generator tank (UL 142) to supply diesel to an emergency power generator. The exterior of tank coating appears to be in satisfactory condition. Corrosion of metal components must be minimized by periodic maintenance. The system is marked per API RP 1637 and NFPA 704.

SPILL CONTAINMENT – The system is equipped with single-walled spill containment bucket mounted on top of the tank with a drain that goes directly into the tank. The fill port is properly labeled. Spill containment in satisfactory condition at time of the inspection.

OVERFILL PROTECTION – The system is equipped with a Rochester Dial Tank Gauge, tight fill connection without overfill prevention valve, and a high-level fuel alarm connected to the annunciator panel. Overfill protection devices must be tested for operability annually at intervals not exceeding 12 months to ensure proper operation. The normal and emergency vents are present and observed to be in satisfactory condition.

NOTE: The system is equipped with a tight fill connection without an overfill prevention valve. Replace the tight fill cap for a screw or flip cap; or install an overfill prevention valve.

"Effective October 17, 2019, owners and operators must designate a primary overfill device. Secondary overfill devices cannot interfere with the proper operation of the designated primary device. The designated primary overfill device must be registered with the Department and perform annual operability testing at intervals not exceeding 12 months."

PIPING – There is no piping associated with the system, except for the supply and return lines which are flexible hoses connected directly to the generator and are in good condition. No anti-siphon or solenoid valve is required, the generator rests on top of the tank and is not producing a gravity head.

RELEASE DETECTION: The facility conducts weekly visual inspections of visible/exposed tank components including spill containment bucket, tank coating, gauge, and sensors. The tank interstitial space is monitored via leak sensor connected to the annunciator panel Release detection devices must be tested for operability annually at intervals not exceeding 12 months to ensure proper operation.

GENERAL REMINDER:

INCIDENT RESPONSE - An incident is a condition or situation indicating that a release or discharge may have occurred. Incident investigations must be initiated within 24 hours. If within 72 hours of discovery the investigation does not confirm that a discharge did not occur, then the incident must be reported to the contracted county. All positive responses of release detection devices (such as alarms) must be investigated and a determination made as to whether a discharge occurred. Records of all incidents must be maintained along with the incident investigation findings for inspection by the Department or contracted county.

REPAIRS, OPERATION AND MAINTENANCE - Storage tank system equipment shall be maintained in sound

Activity Opened: 05/03/2022 Page 3 of 4 Nereida Hernandez

operational condition to reduce the likelihood of releases and incidents. Corrosion of metal components must be minimized by periodic maintenance. Water in excess of one inch in depth or any regulated substances collected in secondary containment shall be removed within 72 hours of discovery and properly disposed.

RECORDS - Records generated on or after January 11, 2017, shall be kept for three years. Records generated before January 11, 2017, are required to be kept for two years, in accordance with rule 62-762.711, F.A.C.

Due to the COVID-19 pandemic, the facility representative was not required to sign the report.

The inspection report was provided by e-mail to Rod Stitt (RStitt@healthcareswfl.org) and Oscar Villa (OVilla@healthcareswfl.org).

Inspection Photos

Added Date 05/11/2022

General view of the system

Added Date 05/11/2022

Spill containment

Added Date 05/11/2022

Overfill-Rochester Gauge

Added Date 05/11/2022

Overfill and leak sensors

May 11, 2022

Rod Stitt

RStitt@healthcareswfl.org

RE: Compliance Assistance Offer

Collier Health Services 1454 Madison Ave W Immokalee, FL 34142 **DEP Facility # 9818091**

<u>Collier County – Storage Tanks</u>

Dear Mr. Stitt:

A storage tank inspection and file review were conducted at the above noted facility on or about May 3, 2022, by the Collier County Solid and Hazardous Waste Management Division (SHWMD), on behalf of the Florida Department of Environmental Protection. During the inspection and file review, potential non-compliance was noted. The purpose of this letter is to offer compliance assistance as a means of resolving this matter.

Specifically, potential non-compliance with the requirements of Chapter 376 and 403, Florida Statutes, and Chapter 62-761 or 62-762, Florida Administrative Code (Fla. Admin. Code) was observed. Please see the attached inspection report for a full account of County observations and recommendations.

We request you review the item(s) of concern and respond in writing within 15 days of receipt of this Compliance Assistance Offer. Your written response should include one of the following:

- 1. Describe what has been done to resolve the non-compliance issue(s) or provide a schedule describing how/when the remaining issues will be addressed.
- 2. Provide the requested information, or information that mitigates the concerns or demonstrates them to be invalid.
- 3. Arrange for the inspector to visit your facility to discuss the item(s) of concern.

Mr. Rod Stitt Page 2 May 11, 2022

It is the Department's desire that you are able to adequately address the aforementioned issues so that this matter can be closed. Your failure to respond promptly may result in the initiation of formal enforcement proceedings.

Please address your response and any questions to Nereida Hernandez at (239) 252-8475 or by e-mail at $\underline{\text{Nereida.Hernandez@CollierCountyFL.gov}}$.

Sincerely,

Nereida Hernandez

Environmental Specialist

Collier County Public Utilities Department

Solid and Hazardous Waste Management Division

Enclosure: Inspection Report

cc: Oscar Villa (OVilla@healthcareswfl.org)

May 31, 2022

Rod Stitt

RStitt@healthcareswfl.org

RE: Return to Compliance Letter

Collier Health Services 1454 Madison Ave W Immokalee, FL 34142 **DEP Facility # 11/9818091**

<u>Collier County – Storage Tanks</u>

Dear Mr. Stitt:

Collier County Solid and Hazardous Waste Management Division (SHWMD), on behalf of the Florida Department of Environmental Protection, personnel issued a Compliance Assistance Offer Letter to the above-referenced facility on May 11, 2022. Based on the information provided on May 31, 2022, the facility was determined to have returned to compliance with the Department's Storage Tank rules and regulations.

The Department appreciates your efforts to maintain this facility in compliance with state and federal rules. Should you have any questions please contact Nereida Hernandez at (239) 252-8475 or by e-mail at Nereida. Hernandez@CollierCountyFL.gov.

Sincerely,

Nereida Hernandez Environmental Specialist Collier County Public Utilities Department Solid and Hazardous Waste Management Division

cc: Oscar Villa (OVilla@healthcareswfl.org)

Facility Detailed List Report

Number of Facilities = 1

Facility Info															
Facility ID	County	У		Status			EPA ID			Other ID Old		Old Fac. ID		Follow Up	
16979	Collier	r A - Acti			/e - W	aste Generator	NA	NA			9602029	9 1	11043	74	N - None Needed
Facility Name	Mailin	g Address		Location Address			Contac	Contact			Title		Phone	9	E-mail Address
Collier Health Services		W Madison Ave			1454 W Madison Ave Immokalee, 34142		Collier Inc	Collier Health Services Inc		Owner ((239) 658-3000			
SIC Code	Gen St	tat		Total H	W Di	sposal	Data T	уре			Date		Org C	ontact	Org Code
8011 - Services - Offices And Clinics Of Medical Doctors		T A HAZARDOUS GENERATOR	5	0			V - Veri Site Vis	ification sit	By Or	By On- 2/13/2019			Edward Tucker		11 - Collier
Full-Time Employees		Facility Updated Date													
				2/13/2019 10:00:42 AM											
Waste Info															
Waste Type		Storage Method	Disp	osal hod		Mo. (Units)	Мах Мо	. (Lbs)			sposal Quantities		es rage	Ques Disposal	RCRA Hazardous
LDEB - Fluorescent Lamps/Devices		OG - Other Good	EE - Wast	Universal te	l	3 (POUNDS)		3	36	Off-	f-Site N			N	N
Activity Info															
Activity Type Description Activity Da						ty Date		Retur	n To C	om	pliance I	ate	<u> </u>		
Facility has no correspo	onding a	ctivity information	n.												

Facility Detailed List Report

Number of Facilities = 1

22964 C Facility Name Marion Fether Medical 1 Center I SIC Code 8021 - Services -	County Collier Mailing Address 1454 Madison Ave Immokalee, FL 34142 Gen Stat N - NOT A HAZARDOUS WASTE GENERATOR	O - Out Of Business Location Address 1454 Madison Ave, B Immokalee, 34142 Total HW Disposal 0	Pata Ty V - Verif Site Visit	ype fication By On-	Other ID 0101- 5058 Title Date 3/12/2019	Old Fac. ID 1110778 Phone () - Org Contact Edward Tucker	N - None Needed E-mail Address Org Code	
Facility Name Marion Fether Medical Center SIC Code 8021 - Services - Offices And Clinics Of Dentists	Mailing Address 1454 Madison Ave Immokalee, FL 34142 Gen Stat N - NOT A HAZARDOUS	Location Address 1454 Madison Ave, B Immokalee, 34142 Total HW Disposal 0	Data Ty V - Verif	ype fication By On-	5058 Title	Phone () - Org Contact	E-mail Address Org Code	
Marion Fether Medical 1 Center I SIC Code 8021 - Services - Offices And Clinics Of Dentists	1454 Madison Ave Immokalee, FL 34142 Gen Stat N - NOT A HAZARDOUS	1454 Madison Ave, B Immokalee, 34142 Total HW Disposal	Data Ty V - Verif	ype fication By On-	Date	() - Org Contact	Org Code	
Center I SIC Code C 8021 - Services - Offices And Clinics Of Dentists	Immokalee, FL 34142 Gen Stat N - NOT A HAZARDOUS	Immokalee, 34142 Total HW Disposal 0	V - Verif	fication By On-		Org Contact		
8021 - Services - Offices And Clinics Of Dentists	N - NOT A HAZARDOUS	0	V - Verif	fication By On-				
Offices And Clinics Of Dentists					3/12/2019	Edward Tucker	11 0 11	
Full-Time Employees		Facility Undated Date				Euwaru rucker	11 - Collier	
		Facility Updated Date						
			3/12/2019 9:37:23 AM					
Comments:								
Comment Date	Comment							
3/12/2019 E	Entire Building Currently Collier Health Services.							
Waste Info								
Waste Type Storage	e Method Disposal Met	hod Mo. (Units)	Max Mo. (Lbs)) Lbs/ Disposa Year Locatio		Ques e Disposal	CRA Hazardous	
Facility has no correspon	iding waste information.							
Activity Info								
Activity Type	Description	Activity Date		Return To Compliance Date				
	iding activity information.							

Site 72 – Howard Fertilizer Spill

Sellers, Robert

From: Sellers, Robert < Robert.Sellers@FloridaDEP.gov>

Sent: Wednesday, January 3, 2024 9:26 AM

To: Victor San Agustin

Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

Good Morning Victor,

Your request for extension is approved with a new due date of March 18, 2024.

Please let me know if you have any questions.

Bob Sellers

Environmental Specialist III

Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101

Temple Terrace, FL 33637 Office: 813-470-5761

Robert.sellers@floridadep.gov

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Tuesday, January 2, 2024 8:28 AM

To: Sellers, Robert < Robert. Sellers@Florida DEP.gov>

Cc: Steve Smith <ssmith@howardfert.com>; Roger Pragle <rpragle@mdenv.com>; Briana Pragle

<BPragle@mdenv.com>; Weng, Randy <Randy.Weng@dot.state.fl.us>; Dwayne Collier <dcollier@howardfert.com>;

Benji Sikes <BSikes@Howardfert.com>

Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC 15319

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert,

This is a reminder to please follow up on my December 18 request below.

Thanks for the help.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520

Email vsanagustin@mdenv.com

From: Victor San Agustin

Sent: Monday, December 18, 2023 9:28 AM

To: Sellers, Robert < Robert. Sellers@Florida DEP.gov>

Cc: Steve Smith < ssmith@howardfert.com >; Roger Pragle < rpragle@mdenv.com >; Briana Pragle

<<u>BPragle@mdenv.com</u>>; Weng, Randy <<u>Randy.Weng@dot.state.fl.us</u>>; Dwayne Collier <<u>dcollier@howardfert.com</u>>;

Benji Sikes <BSikes@Howardfert.com>

Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC 15319

Hello Robert:

On behalf of Howard Fertilizer & Chemical Company, Inc., this is to request another 90 day extension in which to remove 5,000 gal from each recover well located at the above referenced spill site.

Howard Fertilizer has taken on the task of removing the groundwater, approximately 500 gallons at a time. As of this email, per the attached manifests, 800 gal has been removed from the eastern recovery well and 1,000 gal from the western recovery well.

Assuming no delays, we expect to submit our site assessment report by Monday, 3/18/2024.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520

Email vsanagustin@mdenv.com

From: Sellers, Robert < Robert. Sellers@FloridaDEP.gov>

Sent: Tuesday, November 7, 2023 9:25 AM

To: Victor San Agustin < VSanAgustin@mdenv.com >

Cc: dpeterson@howardfert.com; Steve Smith <ssmith@howardfert.com>; Roger Pragle <rpre>crpragle@mdenv.com>; Briana

Pragle < BPragle@mdenv.com; Weng, Randy < Randy <a href="mailto:Randy.Randy.Randy.Randy.Randy.Randy.Randy.Randy.Randy.Randy.Randy.R

Good Morning Victor,

Your request for extension is approved with a new due date of January 2, 2024.

Please contact me if you have any questions.

Bob Sellers

Environmental Specialist III

Department of Environmental Protection

Florida - Southwest District

13051 North Telecom Parkway, Suite 101

Temple Terrace, FL 33637

Office: 813-470-5761

Robert.sellers@floridadep.gov

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Thursday, November 2, 2023 3:10 PM

To: Sellers, Robert < Robert. Sellers@Florida DEP.gov>

Cc: <u>dpeterson@howardfert.com</u>>; Steve Smith < <u>ssmith@howardfert.com</u>>; Roger Pragle < <u>rpragle@mdenv.com</u>>; Briana

 $\label{eq:compression} Pragle < \underline{BPragle@mdenv.com} >; Weng, Randy < \underline{Randy.Weng@dot.state.fl.us} >$

Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC 15319

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert:

On behalf of Howard Fertilizer (Howard), this is to request a 45 day extension from the November 16, 2023 deadline in which to submit the site assessment report. We plan to submit the site assessment report by Tuesday, January 2, 2024. As of this email, we have not yet removed the complete 5,000 gallons from each recovery well. As of this email, 1,300 gallons of groundwater total was removed from the two recovery wells when both wells were installed last 9/6/23.

We have been having an issue complying with the 18 ft rule (18 ft distance required between the tanker and the concrete edge of the road) required by FDOT. Based on my discussions with Howard personnel, Howard is making arrangements with the adjacent property owners to allow Howard to park the tanker on private property so the tanker will be more than 18 ft from the edge of the road. Groundwater recharge is also poor in each recovery well. Howard is working on a system that will remove groundwater slowly without having to man the well during pumping.

Thank you for your consideration. If you have any questions, please call or email me.

Victor L. San Agustin, P.E., C.H.M.M.
Senior Engineer
M&D Environmental Services, LLC
5896 Azalea Street
Port Orange, FL 32127
M 813-842-5520
Email vsanagustin@mdenv.com

From: Sellers, Robert < Robert. Sellers@FloridaDEP.gov>

Sent: Thursday, September 21, 2023 2:36 PM **To:** Victor San Agustin < VSanAgustin@mdenv.com>

Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

Hi Victor,

Thank you for the update. Let me know as we get closer to the deadline if you need an extension.

Bob

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Thursday, September 21, 2023 2:22 PM

To: Sellers, Robert < <u>Robert.Sellers@FloridaDEP.gov</u>>

Cc: dpeterson@howardfert.com; Roger Pragle@mdenv.com; Briana Pragle BPragle@mdenv.com; Weng,

Randy < Randy. Weng@dot.state.fl.us>

Subject: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert,

A site reconnaissance by Howard Fertilizer personnel yesterday, Sept. 19 shows high ditch water levels in the area of the recovery wells. See attached pics. A parked mobile tanker will not be able to park safely to comply with FDOT's 18 ft rule (18 ft distance between tanker and edge of road). One side of the tanker will have to park in the ditch water (not safe) if groundwater is to be removed from each recovery well at this time.

On behalf of Howard Fertilizer, we recommend waiting for the ditch water levels to subside before parking a tanker at the spill site to receive groundwater. We may need an extension from the November 16 deadline noted in your email below depending on how soon the ditch water subsides so the tanker can park safely and receive groundwater in compliance with FDOT requirements. I will keep you posted.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer
M&D Environmental Services, LLC
5896 Azalea Street par
Port Orange, FL 32127
M 813-842-5520
Email vsanagustin@mdenv.com

From: Sellers, Robert < Robert. Sellers@FloridaDEP.gov>

Sent: Tuesday, September 12, 2023 12:28 PM **To:** Victor San Agustin < <u>VSanAgustin@mdenv.com</u>>

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Good Afternoon Victor.

Your request for extension is approved with a new due date of November 16, 2023.

Bob Sellers

Environmental Specialist III

Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101 Temple Terrace, FL 33637

Office: 813-470-5761

Robert.sellers@floridadep.gov

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Tuesday, September 12, 2023 9:58 AM

To: Sellers, Robert < Robert. Sellers@Florida DEP.gov>

Cc: dpeterson@howardfert.com; Roger Pragle <rpragle@mdenv.com>; Briana Pragle <BPragle@mdenv.com>; Weng,

Randy < Randy. Weng@dot.state.fl.us>

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert:

On behalf of Howard Fertilizer, this is to request a 30 day extension from 10/16/23 to 11/16/23 in which to submit the report.

The additional time is requested to pump approximately 5,000 gal of groundwater from each recovery well. The recovery wells were installed last 9/6/23.

The vac truck was vacuuming groundwater much faster than the recovery well to recharge groundwater.

We have to set up a smaller pump and tank onsite to remove groundwater and obtain FDOT approval if needed.

Thanks for considering. Any questions, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer
M&D Environmental Services, LLC
5896 Azalea Street
Port Orange, FL 32127
M 813-842-5520
Email vsanagustin@mdenv.com

From: Sellers, Robert < <u>Robert.Sellers@FloridaDEP.gov</u>>

Sent: Thursday, August 31, 2023 9:44 AM

To: Victor San Agustin < VSanAgustin@mdenv.com>

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Good Morning Victor,

Your request for an extension of time to submit the report is approved. The new due date is October 16, 2023.

Bob Sellers

Environmental Specialist III

Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101 Temple Terrace, FL 33637

Office: 813-470-5761

Robert.sellers@floridadep.gov

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Thursday, August 31, 2023 9:31 AM

To: Sellers, Robert < Robert. Sellers@Florida DEP.gov>

Cc: dpeterson@howardfert.com; Randy Conrad rconrad@teamues.com; Roger Pragle rpragle@mdenv.com; Briana

Pragle < BPragle@mdenv.com>

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert:

This is to request the report submittal date be moved from 9/30/2023 to 10/16/23, a Monday. The drill date had to be moved from 8/22/2023 to 9/6/23, approximately 15 days due to a delay in issuance of the drilling permit by Collier County Health Dept.

Thanks for the help. Any questions, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email vsanagustin@mdenv.com

From: Sellers, Robert < Robert. Sellers@FloridaDEP.gov>

Sent: Monday, July 10, 2023 9:09 AM

To: Victor San Agustin < VSanAgustin@mdenv.com >

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Good Morning Victor,

Thank you for the update. The report was due July 31, but due to scheduling difficulties with the drilling contractor, your request for extension is approved with a new due date of September 30, 2023.

Bob Sellers

Environmental Specialist III

Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101

Temple Terrace, FL 33637 Office: 813-470-5761

Robert.sellers@floridadep.gov

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Friday, July 7, 2023 8:43 AM

To: Sellers, Robert < Robert.Sellers@FloridaDEP.gov >

Cc: dpeterson@howardfert.com; Briana Pragle Briana Briana Bri

Conrad < rconrad@teamues.com >

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert,

Just touching base, on behalf of Howard Fertilizer, based on a recovery well installation date of August 22, 2023 as scheduled by the drilling contractor below, then sampling to be conducted subsequently, we plan to submit the written report by Sept 30, 2023.

If you have any questions or concerns, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer
M&D Environmental Services, LLC
5896 Azalea Street
Port Orange, FL 32127
M 813-842-5520
Email vsanagustin@mdenv.com

From: Victor San Agustin

Sent: Tuesday, June 27, 2023 10:19 AM

To: Sellers, Robert < Robert. Sellers@Florida DEP.gov>

Cc: dpeterson@howardfert.com; Briana Pragle <BPragle@mdenv.com>; Roger Pragle <rpragle@mdenv.com>

Subject: FW: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Hello Robert:

FYI below from the drilling contractor. Will keep you posted.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street

From: Randy Conrad < rconrad@teamues.com>

Sent: Tuesday, June 27, 2023 10:05 AM

To: Victor San Agustin < VSanAgustin@mdenv.com>

Cc: Briana Pragle < BPragle@mdenv.com>; Roger Pragle < rpragle@mdenv.com>

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Victor,

I have you on the schedule for August 21st and 22nd.

I will be contacting you to make sure I have all the information to pull permits.

Randy Conrad

National Business Development GEO Exploration

1818 7th Avenue North, Unit 1 Lake Worth, FL 33461 f (561) 395-5805 | c (954) 347-1266

From: Victor San Agustin < VSanAgustin@mdenv.com>

Sent: Tuesday, June 27, 2023 9:01 AM **To:** Randy Conrad < rconrad@teamues.com>

Cc: Briana Pragle < BPragle@mdenv.com>; Roger Pragle < rpragle@mdenv.com>

Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

This Message Is From an External Sender

This message came from outside your organization.

Randy,

Please advise regarding my June 26 request below.

I would also like to set up the 4 drums to collect drill cuttings inside a trailer so the drums can leave the same day. Please call to discuss.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer
M&D Environmental Services, LLC
5896 Azalea Street
Port Orange, FL 32127
M 813-842-5520
Email vsanagustin@mdenv.com

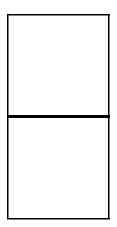
From: Victor San Agustin

Sent: Monday, June 26, 2023 9:52 AM **To:** Randy Conrad rconrad@teamues.com

Cc: Briana Pragle < BPragle@mdenv.com>; Roger Pragle < rpragle@mdenv.com>> Subject: FW: OSP — Permit # 2023-K-192-00032 - FDOT Permit Approved

Hello Randy,

FYI below. Please click on the link to download the approval package. Can you please advise what is a good day for you to install the two recovery wells? Please advise. Thanks for the help.


Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer
M&D Environmental Services, LLC
5896 Azalea Street
Port Orange, FL 32127
M 813-842-5520
Email vsanagustin@mdenv.com

Lillali vsallagustili@illueliv.com

COASTAL WASTE SERVICES
From: donotreplyapps@dot.state.fl.us <donotreplyapps@dot.state.fl.us></donotreplyapps@dot.state.fl.us>
Sent: Thursday, June 22, 2023 3:31 PM
To: Victor San Agustin < VSanAgustin@mdenv.com > Subject: OSP – Permit # 2023-K-192-00032 - Permit Approved
Subject. OSF — Fermit # 2025-N-132-00032 - Fermit Approved
FDOT has approved Permit # 2023-K-192-00032 Project Name: "SR29 Recovery Well / Monitoring Well".
You may log in to One-Stop Permitting to view your approved permit package.
Click here to download the approved package.
Comments:
Please do not reply to this email. Replies to this email will not be monitored or responded to.

M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127

March 21, 2023

Elianna Florido Florida Department of Environmental Protection 13051 Telecom Parkway N Temple Terrace, FL 33637

Subject: Interim Source Removal Proposal - Howard Fertilizer Spill Site;

½ Mile South of SR-82 and SR-29, Corkscrew, Collier County, FL 34142

FDEP Site # ERIC 15319

Dear Ms. Florido:

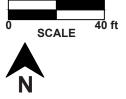
Thank you for your February 14, 2023 email. On behalf of Howard Fertilizer and Chemical Company, Inc., this document shall serve as our Interim Source Removal (ISR) Proposal for the above referenced site.

Our ISR proposal includes installing two groundwater recovery wells on each side of the road way. A layout showing the recovery well locations is enclosed as Figure 1. Each recovery well will be 4 inches diameter, will be approximately 30 ft-BLS with a well screen of 15 feet located at the well bottom. Prior approval will be obtained from Florida Department of Transportation (FDOT) in order to install the recovery wells on the FDOT right of way and remove groundwater. Well permits will also be obtained from Collier County Health Department prior to installation.

Approximately 5,000 gallons will be removed from each recovery well and then transported offsite for proper disposal. Temporary monitor wells TMW-W, TMW-E, and TMW-B will be sampled for Manganese, Iron, and Arsenic shortly after groundwater removal. A written report documenting source removal work, lab results, and follow up recommendations will be submitted to your office within 45 days of sampling.

Department approval of this ISR proposal is requested. If you have any questions, please call me at 813-842-5520 or email me at <u>vsanagustin@mdenv.com</u>.

Sincerely,


M&D Environmental Services, LLC

Victor L. San Agustin, P.E., C.H.M.M.

Senior Engineer

vsa

TMW-W— Temporary Monitor Well

RW-W . - Recovery Well

Well Locations

PROJECT NO.: E0091

DATE: March 10, 2023

FIGURE 2

M&D ENVIRONMENTAL SERVICES, LLC.

5896 Azalea Street Port Orange, FL 32127

TEL. 813-842-5520

From: <u>Victor San Agustin</u>

To: <u>Kiyali, Serge</u>; <u>Angulo, Yanisa</u>

Cc: <u>Doug Peterson</u>; <u>Roger Pragle</u>; <u>Briana Pragle</u>

Subject: RE: Howard Fertilizer-ERIC_15319, Corkscrew Spill Site, Collier County

Date: Wednesday, September 14, 2022 9:10:35 AM

Attachments: <u>image002.png</u>

image006.png

SAR FDEP 9-14-2022.pdf

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Serge:

Attached is the requested Site Assessment Report for the samplings conducted in July and Sept, 2022.

If you have any questions, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer

M & D Industrial Services, LLC 5896 Azalea Street

Port Orange, FL 32127

Land 386-238-9658 Cell 813-842-5520

Email - vsanagustin@mdindustrialservices.com

Website - www.mdindustrialservices.com

From: Kiyali, Serge <Serge.Kiyali@FloridaDEP.gov> Sent: Wednesday, August 31, 2022 3:57 PM

To: Victor San Agustin < VSan Agustin@mdindustrialservices.com>; Angulo, Yanisa

<Yanisa.Angulo@FloridaDEP.gov>

Cc: Doug Peterson <dpeterson@howardfert.com>; Roger Pragle

<rpragle@mdindustrialservices.com>; Briana Pragle <bpragle@mdindustrialservices.com>

Subject: RE: Howard Fertilizer-ERIC_15319, Corkscrew Spill Site, Collier County

SITE ASSESSMENT REPORT Oct, 2019 Roadside Fertilizer Spill 1/2 Mile South of SR-29 and SR-82 Roundabout Corkscrew, Collier County, Florida 34142 FDEP OER Report No. OHMIT #2019-3I-64280Z

prepared for

Howard Fertilizer and Chemical Company, Inc. 8306 South Orange Avenue Orlando, FL 32809

prepared by

M & D Industrial Services, LLC 5896 Azalea Street Port Orange, Florida 32127

September 14, 2022

September 14, 2022 Project No. E0091

Table of Contents

1.0	Introduction
2.0	Summary of Findings / Recommendations
3.0	Certification by Responsible Authority5
4.0	Figures
	Figure 1 – Location of Spill Site Figure 2 – Soil, Sediment, Groundwater, Surface Water Sample Locations Figure 3 – Direction of Groundwater Flow
5.0	Tables
	Table 1 – Summary of Soil Lab Data Table 2 – Summary of Groundwater Lab Data Table 3 – Summary of Surface Water Lab Data Table 4 – Monitor Well Water Levels
6.0	Attachments
	Attachment 1 – July 20, 2021 Email from FDEP Attachment 2 – Construction Logs for Replacement Temporary Monitor Wells Attachment 3 - Monitor Well Sampling Logs Attachment 4 – Lab Reports Attachment 5 – Material Data Sheet of Spilled Fertilizer & Arsenic Content in Plant Water

1.0 Introduction

On behalf of Howard Fertilizer & Chemical Company, Inc., this report serves as a follow up to the recommendations made in the previous Site Assessment Report (SAR) dated 3-10-2021. FDEP personnel concurred with M&D's recommendations as shown in a July 20, 2021 email from Morgan Popidinski, FDEP-South District, attached as **Attachment 1**.

Temporary monitor wells TMW-W and TMW-E were destroyed as reported in M&D's 3-10-2021 site assessment report. M&D recommended and FDEP concurred with reinstalling the two temporary monitor wells after completion of road construction. Road construction of the roundabout located at SR-82 and SR-29 was completed approximately in May, 2022. Construction activities included road construction work at the spill site. Figure 1 shows the spill site location's proximity to the roundabout.

M&D personnel conducted a site survey on 5/25/2022 and confirmed that temporary monitor wells TMW-W and TMW-E can still be installed in the same locations. FDOT required a General Use permit prior to installing the temporary wells. M&D applied for the General Use permit on 6-24-2022. FDOT issued General Use permit 2022-K-192-00025 allowing M&D to install the temporary monitor wells. The two (2) temporary wells were installed on 6-29-2022. The monitor well construction logs are enclosed in Attachment 2. Monitor well TMW-B was still in tact and not damaged on the date of sampling.

Sampling of the two (2) replacement temporary monitor wells was conducted on 7-20-22. The monitor well sampling logs are enclosed in Attachment 3. Water levels and GPS coordinates of the 3 temporary wells were also recorded and are presented in **Table 4**. Based on the recorded water levels, direction of groundwater flow is towards the NNE and is presented in Figure 3. All other sampling as recommended in the 3-10-2021 site assessment report was also conducted the same day. All other sampling included sampling of sediment at Ditchwater-B and sediment near Soil B.

All samples were delivered to SGS Labs in Orlando for lab analysis same day, July 20, 2022. The SGS Lab report was issued on 7/27/2022 and is enclosed as Attachment 4. The West Ditch Surface Water was sampled on 9/1/2022. The SGS lab report was issued on 9/12/2022 and is also enclosed in **Attachment 4**.

2.0 Summary of Findings / Recommendations

Table 1 shows all soil and sediment sampling results conducted to date including the results from the July 20, 2022 sediment samples. All sample locations to date are shown in Figure 2. Arsenic in the sediment sample next to Soil-B was 0.87 mg/kg. Arsenic in the Ditchwater-B was 0.26 I. As documented in M&D's 1-31-2020 SAR in Attachment 5, a 12/14/2019 lab sample pulled from the plant water used to make the spilled fertilizer has an arsenic content of 0.017 ppm. The material data sheet for the spilled fertilizer, Gator Excel CSL 7 shows no additional arsenic present.

Arsenic levels of 3.4 mg/kg and 5.7 mg/kg are shown in the sediment samples pulled last 10/14/2019 and 1/20/2021 respectively for the West Ditch Sediments. Based on the arsenic

September 14, 2022 Project No. E0091 content of less than 0.017 ppm in the spilled fertilizer, M&D believes the spilled fertilizer could not be the source of these arsenic levels. M&D also believes the 2.1 mg/kg residential SCTL for arsenic applies to soil and not to sediment. M&D requests Department guidance regarding an applicable cleanup target level for sediment in stormwater ditches.

Table 2.0 – Groundwater Data, shows an arsenic level of 17.2 ug/l in TMW-W. M&D believes this arsenic contamination may be from the same source that caused elevated arsenic levels in the West Ditch Sediments.

Table 2.0 also shows the 7/20/22 samples pulled from temporary monitor wells TMW-W (R) and TMW-E(R) have manganese and iron levels are above their respective FDEP groundwater cleanup target levels.

Based on the iron level in background monitor well TMW-B, M&D believes the iron levels may be from another source or is naturally occurring. However, based on the iron content of the spilled fertilizer of 3.5%, the elevated iron in the groundwater sample from well TMW-W may still be attributed to the spilled fertilizer.

Elevated manganese levels in the groundwater may also be attributed to the spilled fertilizer. M&D recommends installation of additional temporary monitor wells to delineate horizontal and vertical extent of manganese contamination in the groundwater.

Table 3 – Surface Water Data includes the lab result from the West Ditch Surface Water pulled last 9/1/2022. Iron in the West Ditch Surface Water sample was 698.0 ug/lit, above the background level of 171 I ug/lit. M&D recommends continuing to monitor, sample, and lab-analyze the West Ditch Surface Water for Iron while the horizontal and vertical extent of manganese contamination in the groundwater is being assessed.. Although iron is present in the spilled fertilizer, other sources of iron in the surface water may be present including naturally occurring iron and surrounding farmland.

3.0 Certification by Responsible Authority:

I certify under penalty of law that this document and all attachments were prepared under my direction *or* supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Doug Peterson

Compliance Officer

Howard Fertilizer & Chemical Company, Inc.

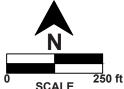
8306 South Orange Avenue

Orlando, FL 32809

Victor L. Lan agustin 9-12-22

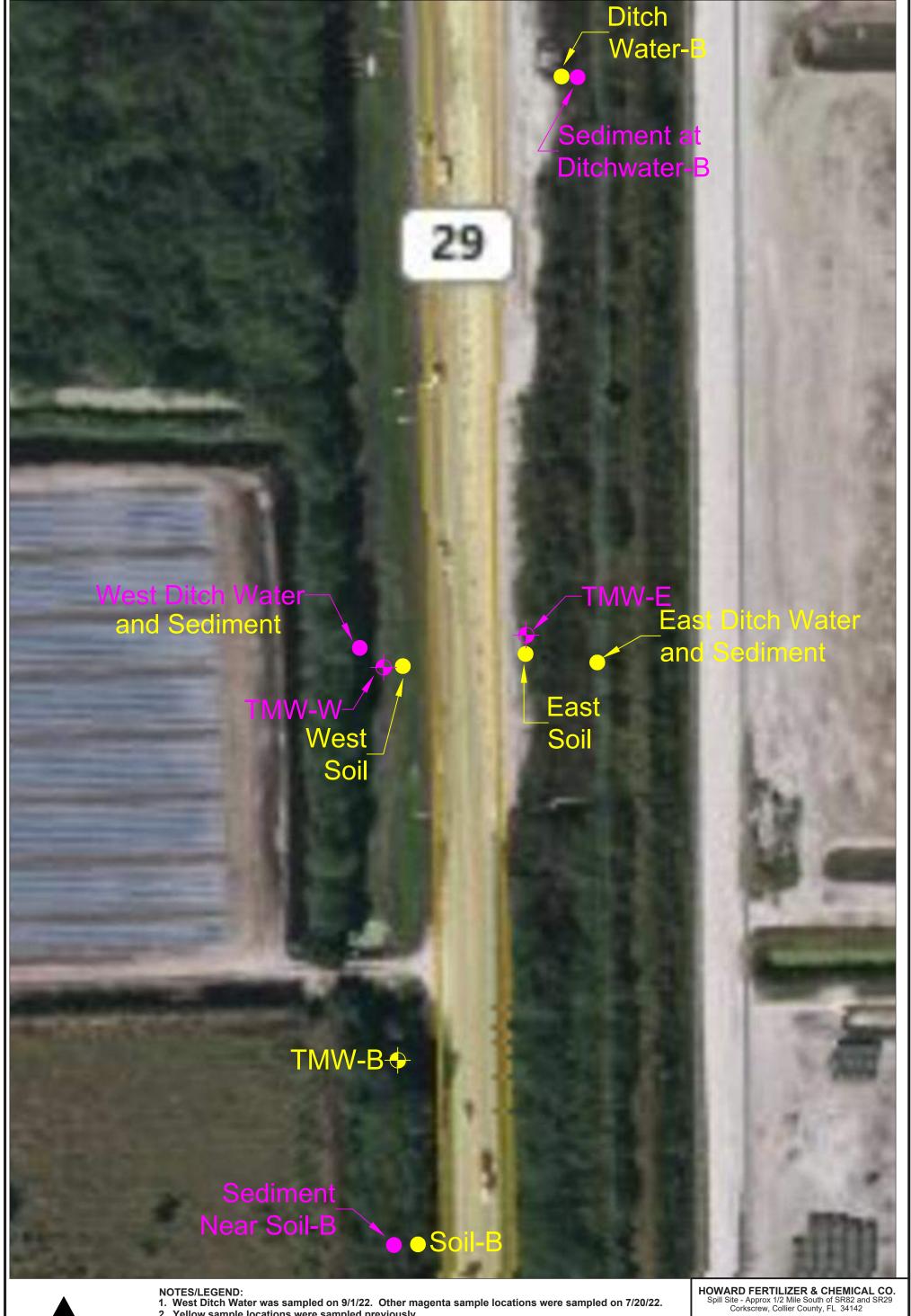
Victor L. San Agustin, P.E., C.H.M.M. Date

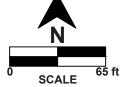
Florida Professional Engineer No. 40226 M & D Industrial Services, LLC.


5896 Azalea Street

Port Orange, FL 32127

4.0 Figures


Location of Spill Site

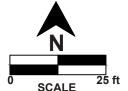

PROJECT NO.: E0091

DATE: Jan 22, 2020

FIGURE 1

M&D INDUSTRIAL SERVICES, LLC.

- Yellow sample locations were sampled previously.
 See Tables 1, 2, and 3 for all sample results.
- -- Temporary monitor well
- -soil or sediment or ditch water sample. See ID's above.


Sample Locations

PROJECT NO.

E0091 FIGURE 2 Aug 31, 2022

M&D INDUSTRIAL SERVICES, LLC

TMW-B - temporary monitor well B - general direction of groundwater flow

(34.67 ft-msl) - ft above mean sea level

Groundwater Elevations & Direction of Groundwater Flow

PROJECT NO.: E0091

Aug 22, 2022

FIGURE 3

5.0 Tables

Table 1 - Summary of Soil and Sediment Lab Data Howard Fertilizer Spill Site Approx 1/2 Mile south of SR-29 & SR-82 Roundabout, Corkscrew, Collier County

	Sample Date	Arsenic (mg/kg)	Beryllium (mg/kg)	Boron (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Fluoride (mg/kg)	Iron (mg/kg)	Lead (mg/kg)	Manganese (mg/kg)	Molybdenum (mg/kg)	Nickel (mg/kg)	Sodium (mg/kg)	Uranium (mg/kg)	Zinc (mg/kg)	Nitrogen, Ammonia (mg/kg)	Nitrogen, Nitrate (mg/kg)	Nitrogen, Nitrite (mg/kg)	Sulfate (mg/kg)
Background Soil	10/14/2019	0.56	0.033 I	1.7 U	0.024 U	2.1	1.2	1.4 U	859	5.1	2.0	0.024 U	0.53 I	24 U	ND	3.2	30.5	2.8 U	2.8 U	34.0 U
Sediment Next to Soil B	7/20/2022	0.87																		
West Soil, 0-1 ft BLS	10/14/2019	2.1	0.039 I	53.1	0.021 U	2.5	1.9	3.0 I	2,050.0	20.6	9.4	0.081 I	0.78 I	36.6 I	ND	10.2	69.9	2.8 U	2.8 U	252.0
West Soil, 1-2 ft BLS	10/14/2019	1.2	0.028 U	1.9 U	0.028 U	1.5	3.8	1.5 U	1,030.0	4.8	42.6	0.32 I	0.62 I	38.5 I	9.31	49.6	15	3.0 U	3.0 U	440.0
West Ditch Sediments	10/14/2019	3.4	0.21 I	4.3 U	0.061 I	10.3	22.2	3.7 U	4,770.0	8.1	292	0.39 I	3.8 I	232 I	9.47 J	362.0	276.0	7.4 U	7.4 U	1,190.0
	1/20/2021	5.7																		
East Soil, 0-1 ft BLS	10/14/2019	0.51	0.051 I	10.9 I	0.067 I	5.8	9.6	1.4 U	1,300.0	19.8	249	0.27 I	2.8	70.8 I	3.87 J	276.0	183.0	10.8	2.9 U	1,240.0
East Soil, 1-2 ft BLS	10/14/2019	0.13 I	0.026 U	1.7 U	0.026 U	0.20 I	0.094 I	1.4 U	134.0	0.21 I	0.26 I	0.026 U	0.073 I	26.0 U	1.84 J	0.22 I	17.5	3.6 I	2.9 U	34.0 U
East Ditch Sediments	10/14/2019	2.2	0.12 I	10.2 I	0.14 I	12.0	77.1	8.1 I	2,010.0	27.2	36.2	0.73 I	3.2 I	207 I	10.8 J	48.4	24.6	10.0 U	10.0 U	120 0 U
	1/20/2021	0.91																		
Ditch Water B Sedimentt	7/20/2022	0.26 I																		
Residential SCTL		2.1	120.0	17,000.0	82.0	210.0	150.0	840.0	53,000.0	400.0	3,500.0	440.0	340.0		110.0	26,000.0	35,000.0	140,000.0	8,700.0	
Industrial SCTL		12.0	1,400.0	430,000.0	1,700.0	470.0	89,000.0	130,000.0	*	1,400.0	43,000.0	11,000.0	35,000.0		820.0	630,000.0	880,000.0	*	220,000.0	
Alternate SCTL														20,000.00						2,200.00
Leachability SCTL		***	63.0	***	7.5	38.0	***	6,000.0	***	***	***	***	130	320,000.00	***	***	***	***	***	None

^{*} Contaminant is not a health concern for this exposure scenario.

^{***} Leachability values may be derived using the SPLP Test to calculate site specific SCTLs or may be determined using TCLP in the event oily wastes are present.

Table 2 - Summary of Groundwater Lab Data Corkscrew Spill Site Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron a (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
TMW-W	10/31/2019	14.2	0.20 U	291.0	0.20 U	2.0 I	1.0 U	560.0 I	12,900.0	9.8	55.1	4.1 IB	26.2 I	28,000.0	10.3 J	54.8	1,800.0	250 U	250 U	43,600.0
TMW-W(R)	7/20/2022	17.2							3,520.0		189.0									
TMW-E	10/31/2019	1.3 U	0.20 U	63.0 U	0.20 U	1.8 I	1.0 U	260	864.0	4.6 I	106.0	3.6 IB	0.40 U	2,270 I	10.3 J	42.7	170 I	50.0 U	50.0 U	8,100.0
TMW-E(R)	7/20/2022	2.1 I							2,100.0		6,600.0									
TMW-B	10/31/2019	1.3 U	0.20 U	74.1 I	0.20 U	2.3 I	1.0 U	470.0	4,170.0	4.6 I	28.9	0.90 IB	0.40 U	23,800.0	8.78 U	4.4 U	500.0	50.0 U	50.0 U	5,000.0
GCTL		10.0	4.0	None	5.00	100.0	1,000.0	4000.0	300.0	15.0	50.0	None	100.0	160,000.0	30.0	5,000.0	None	10,000.0	1,000.0	250,000.0

Table 3 - Summary of Surface Water Lab Data Corkscrew Spill Site Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample	Arsenic	Beryllium	Boron a	Cadmium	Chromium	Copper	Fluoride	Iron	Lead	Manganese	Molybdenum	Nickel	Sodium	Uranium	Zinc	Nitrogen, Ammonia	Nitrogen, Nitrate	Nitrogen, Nitrite	Sulfate
	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
West Ditch Water	10/14/2019	3.2 I	0.20 U	367.0	0.20 U	1.3 I	1.8 I	0.30 U	2,240.0	1.1 U	462.0	2.1 I	10.6 I	22,500.0	14.5	65.0	0.28	0.25 U	0.25 U	23.6
	1/20/2021						6.6 I		1,350.0											
East Ditch Water	9/1/2022 10/14/2019	5.1 I	0.20 U	63.0 U	0.20 U	1.0 U	29.5	0.30 U	698.0 4,160.0	1.1 U	1,460.0	0.30 U	0.90 I	27,300.0	15.4	54.8	0.060 U	0.25 U	0.25 U	3.0 U
East Ditch Water		3.11	0.20 0	05.0 0	0.20 C	1.0 0	27.5	0.50 0	170 I	1.1 0	1,400.0	0.50 0	0.501	27,300.0	15.4	54.0	0.000 C	0.23 0	0.23 0	5.0 0
	1/20/2021						1.8 I		(Note 8)											
Northeast Ditch Water	10/31/2019	2.9 I	0.20 U	75.9 I	0.20 U	1.0 U	1.0 U	280	171 I (Note 8)	4.0 I	45.7	0.30 U	0.40 U	13,200.0	2.96 U	5.6 I	62.0 I	260	50 U	5,600.0
Class III Surface Water St	tandard	50.0	0.1	None	0.10	11.0	2.9	10.0	1.0	0.5	None	None	16.1	None	None	37.0	310.6	None	None	None
			annual ave		or	(Note 2)	or			or			or			or				
					0.76		30.5			18.6			168.5			387.8				
Class III West Ditch Water					0.58		23.5			11.6			123.5			284.1				
Class III East Ditch Water	r Surface Wate	r Standar	d		0.56		19.1			11.0			119.0			273.6				
					(Note 1)		(Note 3)			(Note 4)			(Note 5)			(Note 6)				
Note 1 - Cd is 0.1 if hardnes	s is set at 25 mg	g/l. Cd is 0.	.76 if hardness	is set at 400	0.0 mg/l. Lab	report fa68973	R shows W	est Ditch wa	ter hardness te	ested 277 mg	g/l and East Dit	ch water hardnes	s tested 265 m	ng/l.						
Note 2 - Applies to hexavale	nt chromium															Гетр deg С	28.0			

pН

7.15

(Note 7)

Note 3 - Cu is 2.9 if hardness is set at 25 mg/l. Cu is 30.5 if hardness is set at 400 mg/lit. Lab report FA82481 shows West Ditch water hardness tested 295 mg/l and East Ditch water hardness tested 231 mg/l.

Note 4 - Pb is 0.5 if hardness is set at 25 mg/l. Pb is 18.6 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 5 - Ni is 16.1 if hardness is set at 25 mg/l. Ni is 168.5 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 6 - Zinc is 37.0 if hardness is set at 25 mg/l. Zinc is 387.8 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 7 - Lab report fa68973R shows pH of West Ditch water sample was 7.15 and pH of East Ditch water sample was 7.36. Nitrogen, Ammonia standard shown is based on a pH of 7.15

Note 8 - Lab result is below the the lab Practical Quantitative Limit (PQL) of 300 ug/lit.

Table 4 - Monitor Well Water Levels

Howard Fertilizer - Corkscrew Spill Site
on SR29 Est 1/2 Mile South of SR-82 and SR-29 Roundabout
Corkscrew, Florida

Well ID	TMW-B	TMW-W	TMW-E
Northing Coordinate	779612.417	779909.701	779898.882
Easting Coordinate	513981.255	513977.402	514059.489
Inside Diameter	2 in	2 in	2 in
Top of Casing Elevation (ft)	36.89	38.697	38.109
Depth to Water (ft)	2.22	4.52	3.9
Total Depth (ft)	5.29'	5.30'	5.03'
Water Elevation (ft)	34.67	34.177	34.209

6.0 Attachments

Attachment 1 – July 20, 2021 Email from FDEP South District

Victor San Agustin

From: Popidinski, Morgan < Morgan.Popidinski@FloridaDEP.gov>

Sent: Tuesday, July 20, 2021 11:01 AM

To: VSanAgustin@mdindustrialservices.com

Cc: Hardman, Natalie; Maier, Gary

Subject: SAR Response, Howard Fertilizer, ERIC_15319

Victor San Agustin, M&D Industrial Services, LLC., VSanAgustin@mdindustrialservices.com

RE: Site Assessment Report

Howard Fertilizer Road Spill

1/2 Mile South of SR-29 and SR-82

Immokalee, Collier County, FL

FDEP Facility ID# ERIC_15319

Dear Mr. San Agustin:

Thank you for submitting the above-referenced report dated March 10, 2021.

The Department has completed its technical review of this report. Sediment and surface water samples were collected from the East and West Ditches as well as a background surface water sample from Ditch Water-B. Sediment samples were analyzed for Arsenic and Surface Water samples were analyzed for Copper and Iron. Based on laboratory analytical results, elevated levels of Arsenic in the sediment samples and Iron in the West Ditch Water were identified. Based on the background surface water collected, the sample collected from the East Ditch Water was below the background level. M&D has made the following recommendations:

- M&D has recommended discontinuation of soil sampling. Additionally, discontinuation of surface water sampling for copper. The Department has no objection to these recommendations.
- During road construction activities at the site, TMW-E and TMW-W were destroyed. As such, groundwater sampling was unable to be performed. M&D has recommended sampling from TMW-E, -W and -B following the completion of road construction. The Department has no objection to this recommendation.
- M&D has recommended another sampling event from the West Ditch Water for Iron. The Department has no objection to this recommendation.
- M&D has recommended performing background sediment samples at "Soil B" and Ditch Water B" for Arsenic in order to determine background Arsenic levels. The Department has no objection to this recommendation.

Whenever possible, please submit all written electronic response(s) to FTM.Tanks.Cleanup@dep.state.fl.us.

Kind regards,

Morgan Popidinski

Environmental Specialist I
South District
Florida Department of Environmental Protection
Morgan.Popidinski@FloridaDEP.gov

Office: (239) 344-5706

Attachment 2 – Construction Logs for Replacement Temporary Monitor Wells

	ORD OF WE		Howard Fe	ertilizer			
SITE ID_	TMW-W(R)	_STATION NAME	Spill Site-0	Corkscrew (THER ID	TMW-	W(R)
7 <i>5</i> QUAD_	N/A	COUNTY	Collie	er County	ŝ	STATE	Florida
OWNER_	Howard Fertilize	r & Chemical C	0.	DRILLER	Temporary	y Monitor V	/ell by
	DRILLING				MIQD IIIQU	striai Servio	es, LLC
STAR	T DRILLING:	DATE <u>06</u>	1 29 120	022 TIME	11 : 00	am EST	
COME	LETE DRILLING:	DATE06	1 29 12	022 TIME	_11 :20	am EST	
EQUIPM	ENT/MATERIAL	S DECONTAMIN	ATION PRO	CEDURES:			
DETE	RGENT WASH/	Alconox/Water	; STEAM (CLEANED	N/A	OTHE	R N/A
DRILLI	NG METHOD:						
X	_ AUGER (TYPE:	Hand Auger		_); F	OTARY (TY	/PE:	-
	PERCUSSION (TY	PE:);	OTHER		
BOREHO	DLE DATA:						
	LE DIAMETER: _ IMATE DEPTH TO	THE WATER TA	BLE:			100000	70 75 75 75 75 75 75 75 75 75 75 75 75 75
SAM	MA D, SILT, CLAY ETC	SORTING	COLOR	WET/DRY	FROM	TO feet	THICK NESS feet
JAIN.	Sand	JORIMO	Black	0 1000000000000000000000000000000000000	0	1.0	1.0
			White	Dry Wet	1.0	*	
	Sand		Brown	Wet	3.0	3.0 4.0	2.0 1.0
	Sand	£ 59		1	0.0	1.0	1.0
				Ì			
		9 59					
					16		
		1		1			I

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

TIE ID	TMW-E(R)	STATION NAME	Howard Fe Spill Site-C		OTHER IDT	MW-East	<u> 188</u> 70
'5' QUAD	N/A	COUNTY	Collie	er County		STATE	Florida
		r & Chemical Co					ell by es, LLC
WELL DR	ILLING						
START D	RILLING:	DATE <u>06</u>	1 29 120	022 TIME	11 : 30	am EST	
COMPLE	TE DRILLING:	DATE <u>06</u>	1 29 1 20	022_ TIME	_11 :50	am EST	
EQUIPMEN	T/MATERIALS	DECONTAMIN	ATION PRO	CEDURES:			
DETERG	ENT WASH_	Alconox/Water	; STEAM C	LEANED	N/A	OTHE	R N/A
DRILLING							SA.
X	AUGER (TVPE)	Hand Auger) R	OTARY (TV	PF.	
					OTHER		
		PE:			Omizic	7	- 25
BOREHOLE							
BOREHOLE	DIAMETER: _	4.0	inches;	TOTAL DEPTH	OF BOREH	OLE:	4.5
			36			- 85	755 - 775
APPROXIMA	ATE DEPTH TO	THE WATER TA					
APPROXIM/	122075		BLE:				
	122075	THE WATER TA	BLE:		Well	Screen - 0	to 4.5 ft bls
SAND, SI	MA	THE WATER TA	BLE:	1.0 feet	FROM	Screen - 0	to 4.5 ft bls
sand, si	MA LT, CLAY ETC	THE WATER TA	BLE: COLOR Grey to	1.0 feet	FROM feet	Screen - C	to 4.5 ft bls THICK NESS feet
SAND, SI	MA LT, CLAY ETC and	THE WATER TA	COLOR Grey to Black Black &	1.0 feet WET/DRY Dry	FROM Ret	Screen - C	to 4.5 ft bls THICK NESS feet 2.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5
SAND, SI	MA LT, CLAY ETC and and	THE WATER TA	COLOR Grey to Black Black & White	1.0 feet WET/DRY Dry Wet	FROM Ret 0 2.5	TO feet 2.5 4.0	to 4.5 ft bls THICKNESS feet 2.5 1.5

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

Attachment 3 – Monitor Well Sampling Logs

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE						TE						
NАМЕ: Н	NAME: Howard Fertilizer Spill LOCATION: Approx 1/2 mile South of SR29 and SR82, Corkscrew, WELL NO: TMW-W(R) SAMPLE ID: TMW-W DATE: 07-20-2022											
WELL NO:	TMW-W(F	2)		SAMPLE ID	: TMW	-W			DATE:	07-20)-2022	
				1		SING DA						
WELL	R (inches): 2 i	TUBING	G TER (inches): 〔			INTERVAL to 5.0 fee		DEPTH TER (feet): 4.5	2		E PUMP T\ AILER:	PE PP
WELL VO	LUME PURGE:	1 WELL VOI	LUME = (TOTA	L WELL DEPTH	– STA	TIC DEPTH T	O WATER)	X WELL CAPA	CITY	UK BA	AILER:	ГГ
	t if applicable)		= (5.30 feet -	4.5	2 feet))	0 16	gallons/foo	t =	0 12		gallons
	= (5.30 feet – 4.52 feet) X 0.16 gallons/foot = 0.12 gallons QUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME only fill out if applicable)											
(only fill ou	t if applicable)			= 0.01 gallon	s + (0 0	06 gallons/fo	not X 7	0 feet) + 0	25 gallo	nns =	0.3 nallo	ns
= 0.01 gallons + (0.006 gallons/foot X 7.0 feet) + 0.25 gallons = 0.3 gallons INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING PURGING TOTAL VOLUME PERTUNNATION OF THE PUMP OF TUBING PURGING P												
DEPTH IN	WELL (feet):	5.0	DEPTH IN V	/ELL (feet):	5.0	INITIATE	D AT: 0940	ENDED AT		F	PURGED (g	allons): 1.5
CUMUL. VOLUME PURGE TO (standard TEMP. (circle units) (circle units) TURBIDITY COLOR ODC												
0955	0.5	0.5	0.1	4.5	7.05	28.44	775	6.88	1:	5.2	None	None
1020	0.5	1.0	0.1		7.08	28.61	782	6.95		8.0	None	
1040	0.5	1.5	0.1	4.5	7.11	28.71	788	7.12	1	0.2	None	e None
									+			
WELL CAI	 PACITY (Gallon NSIDE DIA. CAI	s Per Foot): (PACITY (Gal./l).75" = 0.02; Ft.): 1/8" = 0.0	1" = 0.04; 1. 006; 3/16" = 0		6; 2" = 0.10 1/4" = 0.002			5" = 1.0 0.006;			12 " = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer; B	P = Bladder Pun			Submersible F	Pump; PP =	Peristaltic	Pump;	O = O	ther (Specify)
SAMDLED	BY (PRINT) / A	EEII IATION:	1 (SAMPLER(S) SI		LING DA	ATA					
	San Agustin			11.0	\ D	α	4	SAMPLING		40	SAMPLIN	
Service	s, LLC			Victor 2	<u>×</u> ×	lan Ule		INITIATED	_	40	ENDED A	т: 1045
PUMP OR	TUBING WELL (feet):	5.0		TUBING MATERIAL COD	⊧. IDI	PF (.D-FILTERED: `ation Equipment 1)	FILTER S	ZE: μm
					UBING		eplaced	DUPLICATI	71	Υ (N	
	PLE CONTAINE					ATION (includi		INTEN	DED		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	1	TOTAL VOL ED IN FIELD (r	FINAL	ANIAI VOIC	AND/OR	EQU	JIPMENT CODE	FLOW RATE (mL per minute)
TMW- W	2	Plastic	250 ml	HNO3		N/A	N/A	As, Fe	, Mn		APP	~ 0.1 gpm
REMARKS	REMARKS:											
MATERIAI	L CODES:	AG = Amber S = Silicone;	Glass; CG = 0	Clear Glass; 0 = Other (Spe		High Density F	olyethylene;	LDPE = Low [Density Po	olyethyle	ene; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES: A	APP = After (Thi	ough) Peristaltic	Pump;	B = Bailer; SM = Straw		dder Pump; Ing Gravity Drain);		ectric Su	ibmersible F	Pump;
				o information			,		0 -	Julei (C	opcony)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE					SI		4.10				0000	
	oward Fe		pill	<u> </u>			oprox 1/2 n	nile South o				orkscrew,
WELL NO:	TMW-E(R)		SAMPLE ID					DATE: C	07-20)-2022	
\A/E11		TUDIN		MELL		SING DA	TA STATIC	DEDTIL		DI IDOI	E DUMP T	
WELL DIAMETER	R (inches): 2 i	n DIAME	TER (inches):	3/8 DEPTH	H: 0 fee	INTERVAL to 5.0 fee	t TO WAT	ER (feet): 3.90)	OR BA	E PUMP TY (ILER:	PP
WELL VO	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TOTA	L WELL DEPTH	I – STA	TIC DEPTH T	O WATER) X	WELL CAPAC	ITY			
			= (5.30 feet -	4.5	2 feet)	c 0.16	gallons/foot	=	0.12		gallons
	= (5.30 feet - 4.52 feet) X 0.16 gallons/foot = 0.12 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME only fill out if applicable)											
. ,				= 0.01 gallor	ıs + (0.0				25 gallor		0.3 gallor	
	JMP OR TUBIN WELL (feet):	_G 5.0	DEPTH IN W	OR TUBING	5.0	PURGIN	G ED AT: 1055	PURGING ENDED AT	1130	- 1	TOTAL VOL PURGED (a	UME allons): 1.5
BEI IIIII	1000).	CUMUL.		DEPTH			COND.	DISSOLVED	1100		(9	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH standard units)	TEMP. (°C)	(circle units) μmhos/cm <u>or μ</u> S/cm	OXYGEN (circle units) mg/L or % saturation	TURB (NT		COLOF (describ	
1100	0.5	0.5	0.1	3.9	7.12	29.14	821	6.22	18.	.76	None	None
1114	0.5	1.0	0.1	3.9	7.23	29.24	842	6.33	10.		None	None
1126	0.5	1.5	0.1	3.9	7.15	29.22	836	6.38	9.8	84	None	None
TUBING IN	PACITY (Gallon	PACITY (Gal./	Ft.): 1/8" = 0.0		0.0014;	1/4" = 0.002	6; 5/16" = 0	.004; 3/8" =	,	1/2" =	0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer; B	P = Bladder Pur	•	SP = Electric	Submersible Pu	ımp; PP = F	Peristaltic F	Pump;	O = Ot	her (Specify)
	BY (PRINT) / A			SAMPLER(S) SI	GNATURE		NIA .	SAMPLING			SAMPLIN	3
	San Agustin	/ M&D Ind	dustrial	Victor 2	پر کے	lan Ole	untion.	INITIATED A	ат: 113	2	ENDED A	
Service PUMP OR			-	TUBING	· , ,	(T	<u> </u>	(N	<u> </u>	FILTER SI	ZE: μm
	WELL (feet):	5.0		MATERIAL COD			Filtrat	ion Equipment T	ype:			
	CONTAMINATIO				TUBING		eplaced	DUPLICATE			N	
SAM SAMPLE	PLE CONTAINE #	R SPECIFICA MATERIAL	-	SAMPLE P PRESERVATIVE		ATION (includi	ng wet ice)	INTENE ANALYSIS	AND/OR	EQU	MPLING JIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME '	USED		D IN FIELD (r		METH	OD	C	CODE	(mL per minute)
TMW- E	2	Plastic	250 ml	HNO3		N/A	N/A	As, Fe,	Mn	,	APP	~ 0.1 gpm
REMARKS	REMARKS:											
MATERIA	L CODES:	AG = Amber S = Silicone;	Glass; CG = 0 T = Teflon;	Clear Glass; 0 = Other (Spe		High Density F	Polyethylene;	LDPE = Low D	ensity Pol	yethyle	ene; PP	= Polypropylene;
	AMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)											

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Attachment 4 – Lab Report

Orlando, FL 07/27/22

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

M & D Industrial Services, LLC

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

E0091

SGS Job Number: FA97452

Sampling Date: 07/20/22

Report to:

M & D Industrial Services, LLC 5896 Azalea St

Port Orange, FL 32127

vsanagustin@mdindustrialservices.com; dschill@mdindustrialservices.com

ATTN: Don Schill

Total number of pages in report: 25

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Dwayne Foster 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	5
3.1: FA97452-1: TMW-W	6
3.2: FA97452-2: TMW-E	7
3.3: FA97452-3: DITCHWATER SEDIMENT	8
3.4: FA97452-4: SEDIMENT NEAR SOIL B	9
Section 4: Misc. Forms	10
4.1: Chain of Custody	11
Section 5: Metals Analysis - QC Data Summaries	13
5.1: Prep QC MP40993: As,Fe,Mn	14
5.2: Prep QC MP41004: As	20

Sample Summary

Job No:

FA97452

M & D Industrial Services, LLC

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Project No: E0091

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA97452-1	07/20/22	10:45 VA	07/20/22	AQ	Ground Water	TMW-W
FA97452-2	07/20/22	11:32 VA	07/20/22	AQ	Ground Water	TMW-E
FA97452-3	07/20/22	11:45 VA	07/20/22	SO	Sediment	DITCHWATER SEDIMENT
FA97452-4	07/20/22	11:55 VA	07/20/22	SO	Sediment	SEDIMENT NEAR SOIL B

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits Job Number: FA97452

Account: M & D Industrial Services, LLC

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Collected: 07/20/22

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method
FA97452-1	TMW-W					
Arsenic Iron Manganese		17.2 3520 189	10 300 15	1.3 17 1.0	ug/l ug/l ug/l	SW846 6010D SW846 6010D SW846 6010D
FA97452-2	TMW-E					
Arsenic Iron Manganese		2.1 I 2100 6600	10 300 75	1.3 17 5.0	ug/l ug/l ug/l	SW846 6010D SW846 6010D SW846 6010D
FA97452-3	DITCHWATER S	EDIMENT				
Arsenic		0.26 I	0.59	0.12	mg/kg	SW846 6010D
FA97452-4	SEDIMENT NEA	R SOIL B				
Arsenic		0.87	0.62	0.12	mg/kg	SW846 6010D

Orlando, FL

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: TMW-W Lab Sample ID: FA97452-1

 Lab Sample ID:
 FA97452-1
 Date Sampled:
 07/20/22

 Matrix:
 AQ - Ground Water
 Date Received:
 07/20/22

Percent Solids: n/a

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	17.2	10	1.3	ug/l	1		07/22/22 LM	SW846 6010D ¹	
Iron	3520	300	17	ug/l	1	07/21/22	07/22/22 LM	SW846 6010D ¹	SW846 3010A ²
Manganese	189	15	1.0	ug/l	1	07/21/22	07/22/22 LM	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18817

(2) Prep QC Batch: MP40993

PQL = Practical Quantitation Limit MDL = Method Detection Limit U = Indicates a result < MDL

I = Indicates a result > = MDL but < PQL

Report of Analysis

Page 1 of 1

Client Sample ID: TMW-E Lab Sample ID: FA97452-2

Date Sampled: 07/20/22 Matrix: **Date Received:** 07/20/22 AQ - Ground Water

Percent Solids: n/a

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.1 I	10	1.3	ug/l	1	07/21/22	07/22/22 LM	SW846 6010D ¹	SW846 3010A ³
Iron	2100	300	17	ug/l	1	07/21/22	07/22/22 LM	SW846 6010D ¹	SW846 3010A ³
Manganese	6600	75	5.0	ug/l	5	07/21/22	07/25/22 LM	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA18817 (2) Instrument QC Batch: MA18819

(3) Prep QC Batch: MP40993

PQL = Practical Quantitation Limit MDL = Method Detection Limit

U = Indicates a result < MDL

I = Indicates a result > = MDL but < PQL

Report of Analysis

Page 1 of 1

Client Sample ID: DITCHWATER SEDIMENT

Lab Sample ID: FA97452-3 **Date Sampled:** 07/20/22 Matrix: SO - Sediment **Date Received:** 07/20/22 Percent Solids: 76.4

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.26 I	0.59	0.12	mg/kg	1	07/23/22	07/25/22 LM	SW846 6010D ¹	SW846 3050B ²

(1) Instrument QC Batch: MA18820 (2) Prep QC Batch: MP41004

PQL = Practical Quantitation Limit

U = Indicates a result < MDL MDL = Method Detection Limit I = Indicates a result > = MDL but < PQL

Client Sample ID: SEDIMENT NEAR SOIL B

Lab Sample ID:FA97452-4Date Sampled:07/20/22Matrix:SO - SedimentDate Received:07/20/22Percent Solids:73.1

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.87	0.62	0.12	mg/kg	1	07/23/22	07/25/22 LM	SW846 6010D ¹	SW846 3050B ²

(1) Instrument QC Batch: MA18820(2) Prep QC Batch: MP41004

PQL = Practical Quantitation Limit MDL = Method Detection Limit U = Indicates a result < MDL I = Indicates a result > = MDL but < PQL

SGS

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc - Orlando

Chain of Custody

000		and Road, Suite C-15 Orland 07-425-6700 FAX: 407-42		SGS - ORLAN	DO Quote #	SKIFF#	
Client / Reporting Information		Project Information	in l		Analytical I	nformation	Matrix Codes
Company Name: MyO Industrick Surices	Project Name:	RD FERT-COI	EKSCREW SPILL	SITE			DW - Drinking Water
Address: 5896 Azaka St.	Street Vamile	5 of 5 R 291	EKSCLEW SPILL SRBQ INTERSEC State FL	TION			GW - Ground Water
City: Port Orange State: FL Zip: 32127	City CORK	KSCREW	State FL	5			WW - Water SW - Surface
Project Contact: Project Contact: Wisangs with @ milindustrial on Jks. Com	Project #	E0091		5			Water SO - Soil
Project Contact: PE Empelli Strate STIST Project Contact: VSanagustin@milindustrialunikes.low	Fax#						SL- Sludge OI - Oil
Sampler(s) Name(s) (Printed) Sampler 1:	Client Purchase C	Order# E009.	(VSL)				LIQ - Other Liquid AIR - Air
Sampler 1. V J J Sampler 2.	COLLECTION	CONTAIN	ER INFORMATION	1701			SOL - Other Solid
SGS Orlando	SAMPLED	TOTAL# ## 20 PMATRIX BOTTLES & S	HOS HAOS HZSO4 NAOH+ZN NEOH	AA			
Sample # Field ID / Point of Collection DATE	TIME BY:	GW 2	HOI	 			LAG USE ONLY
$\frac{1}{2}$ $\frac{TMW-W}{2}$ $\frac{7bol^2}{2}$	1045 V3A 1132 V3A		2				
2 TMW-E 7/20 3 BW. DITCHWATER SEDIMENT 7/20 4 SEDIMENT DEAR SOILB 7/20	1145 VSA	50L / /					
4 SEDIMENT DEAR SOIL B 7/20	(155 V3A						
4 OCHITECT FORE SOLED TIVE	1105 014	702 1					
Turnaround Time (Business days)		Data Deliverab					S
10 Day (Business) Approved By: / Date		MMERCIAL "A" (RESU MMERCIAL "B" (RESU		50	OL-SEI	PIMENT	j
5 Day		DT1 (EPA LEVEL 3)	2101200 40,			ON	
3 Day RUSH		LLT1 (EPA LEVEL 4)		INITIA	LASSESSMENT	ar	/
2 Day RUSH	ED	D'S					
1 Day RUSH						$-\infty$	
Other				LABE	VERIFICATION	011	Company of the Compan
Rush T/A Data Available VIA Email or Lablink Sample Custon	ly must be docume	ented below each time s	amples change possessio	n, including couri	er delivery. 1851		
Relinquished by Sampler/Affiliation Date Time: Received By/	ffiliation	0 \-	Relinquished By/Affiliation	on		Received By/Affiliat	on
Relinquished by/Affiliation Date Time: Received By/	est of the	tgodo	3 Relinquished By/Affiliation	n n	Date Time: Received By/Affili. 7/20/27 4 Date Time: Received By/Affili. 8		on
5		-	7		Date Time.	8	
Lab Use Only: Cooler Temperature (s) Celsius (corrected):	SIG					http://www.sgs.com/en/	terms-and-conditions
	NO.	D CART GOOD OR ECODAL	COC (4) via Pov 021219				

FA97452: Chain of Custody

Page 1 of 2

SGS Sample Receipt Summary

Job Number: FA97452		Client:	M+D INDUSTRIAL	SERVICES	Project:	HOWARD F	ERT-COF	RKSCRE	W SPILLSITE
Date / Time Received: 7/20/2022 3:	54:00 PM	1	Delivery Method:	DO	Airbill #'s	s:			
Therm ID: IR 1;			Therm CF: 0.4;			# of Cooler	s: 1		
Cooler Temps (Raw Measured) °	C: Coole	er 1: (3.8);						
Cooler Temps (Corrected) °	C: Coole	er 1: (4.2);						
Cooler Information	or or	N		Sample Information			Y o	r N	N/A
Custody Seals Present	/			1. Sample labels present	on bottles		✓		
2. Custody Seals Intact	✓			2. Samples preserved pro	operly		✓		
3. Temp criteria achieved	/			3. Sufficient volume/conta	ainers recvd	for analysis:	✓		
4. Cooler temp verification	R Gun			4. Condition of sample			<u>Intact</u>		
5. Cooler media	ce (Bag)			5. Sample recvd within H	Т		✓		
				6. Dates/Times/IDs on CO	OC match Sa	ample Label	✓		
rip Blank Information	or or	<u>N</u> _	N/A_	7. VOCs have headspace	e				~
1. Trip Blank present / cooler			✓	8. Bottles received for uns	specified tes	ts		\checkmark	
2. Trip Blank listed on COC			✓	9. Compositing instruction	ns clear				✓
,	N or	9	N/A	10. Voa Soil Kits/Jars rec	eived past 4	8hrs?			✓
_				11. % Solids Jar received	l?				✓
3. Type Of TB Received [\checkmark	12. Residual Chlorine Pre	esent?				\checkmark
Misc. Information									
Number of Encores: 25-Gram		5-Gram	Num	ber of 5035 Field Kits:		Number of La	b Filtered	Metals:	
Test Strip Lot #s: pH	0-3			H 10-12 219813A		Other: (Spec	ify)	_	
Residual Chlorine Test Strip Lot #:									
Comments									
SM001 Technician 7	ZANED		Date: 7/20/2020	2.54.00 DM	Reviewer:			Date:	
Rev. Date 05/24/17 Technician: 2	VINED		_ Date: 7/20/2022	J.J4.00 FIVI	iveniewel.			Date.	

FA97452: Chain of Custody Page 2 of 2

Orlando, FL

Section 5

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA97452

Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date:

07/21/22

Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1		
Arsenic	10	1.3	1.3	-0.40	<10
Barium	200	.5	1		
Beryllium	4.0	.1	. 2		
Cadmium	5.0	.1	. 2		
Calcium	1000	50	50		
Chromium	10	.5	1		
Cobalt	50	. 2	. 2		
Copper	25	1	1		
Iron	300	15	17	2.3	<300
Lead	5.0	1	1.1		
Magnesium	5000	35	35		
Manganese	15	. 25	1	0.10	<15
Molybdenum	50	. 3	. 3		
Nickel	40	. 4	. 4		
Potassium	10000	100	200		
Selenium	10	2	2.9		
Silver	10	. 5	.7		
Sodium	10000	250	500		
Strontium	10	. 25	. 5		
Thallium	10	1	1.4		
Tin	50	. 5	1		
Titanium	10	. 5	1		
Vanadium	50	. 5	. 6		
Zinc	20	3	4.4		

Associated samples MP40993: FA97452-1, FA97452-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

FA97452

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date: 07/21/22 07/21/22

Metal	FA97452- Original		RPD	QC Limits	FA97452- Original		Spikelot MPFLICP2		QC Limits
Aluminum	anr								
Antimony	anr								
Arsenic	17.2	17.1	0.6	0-20	17.2	1880	2000	93.1	80-120
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	3520	3430	2.6	0-20	3520	27300	26000	91.5	80-120
Lead	anr								
Magnesium	anr								
Manganese	189	187	1.1	0-20	189	668	500	95.8	80-120
Molybdenum	anr								
Nickel	anr								
Potassium									
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin	anr								
Titanium									
Vanadium	anr								
Zinc	anr								

Associated samples MP40993: FA97452-1, FA97452-2

 ${\tt Results} \, < \, {\tt IDL} \, \, {\tt are } \, \, {\tt shown} \, \, {\tt as} \, \, {\tt zero} \, \, {\tt for} \, \, {\tt calculation} \, \, {\tt purposes} \, \,$

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date:

07/21/22

Metal	FA97452 Origina		Spikelot MPFLICP2		MSD RPD	QC Limit	
Aluminum	anr						
Antimony	anr						
Arsenic	17.2	1910	2000	94.6	1.6	20	
Barium	anr						
Beryllium	anr						
Cadmium	anr						
Calcium	anr						
Chromium	anr						
Cobalt	anr						
Copper	anr						
Iron	3520	27800	26000	93.4	1.8	20	
Lead	anr						
Magnesium	anr						
Manganese	189	670	500	96.2	0.3	20	
Molybdenum	anr						
Nickel	anr						
Potassium							
Selenium	anr						
Silver	anr						
Sodium	anr						
Strontium							
Thallium	anr						
Tin	anr						
Titanium							
Vanadium	anr						
Zinc	anr						

Associated samples MP40993: FA97452-1, FA97452-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Methods: SW846 6010D Matrix Type: AQUEOUS Units: $\mbox{ug/l}$

Prep Date:

07/21/22

Metal	BSP Result	Spikelot MPFLICP2		QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	1810	2000	90.5	80-120
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium	anr			
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron	24700	26000	95.0	80-120
Lead	anr			
Magnesium	anr			
Manganese	500	500	100.0	80-120
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium	anr			
Tin	anr			
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP40993: FA97452-1, FA97452-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Methods: SW846 6010D

Units: ug/l

Matrix Type: AQUEOUS
Prep Date:

07/21/22

Metal	FA97452- Original	1 SDL 1:5	%DIF	QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	17.2	16.7	2.9	0-10
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium	anr			
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron	3520	3530	0.3	0-10
Lead	anr			
Magnesium	anr			
Manganese	189	192	1.6	0-10
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium	anr			
Tin	anr			
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP40993: FA97452-1, FA97452-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

POST DIGESTATE SPIKE SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date:									07/21/2	2
Metal	Sample ml	Final ml	FA97452 Raw	-1 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic	9.8	10	17.2	16.856	108.9	0.2	5	100	92.0	80-120
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron	9.8	10	3519	3448.62	6219	0.2	150	3000	92.3	80-120
Lead										
Magnesium										
Manganese	9.8	10	189.1	185.318	232.5	0.2	2.5	50	94.4	80-120
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										

Associated samples MP40993: FA97452-1, FA97452-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(**) Corr. sample result = Raw * (sample volume / final volume) (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA97452

Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Matrix Type: SOLID

Prep Date:

07/23/22

Methods: SW846 6010D

Units: mg/kg

Metal	RL	IDL	MDL	MB raw	final
Aluminum	10	.7	1.8		
Antimony	1.0	.05	.065		
Arsenic	0.50	.065	.1	0.025	<0.50
Barium	10	.025	.05		
Beryllium	0.25	.005	.025		
Cadmium	0.20	.005	.025		
Calcium	250	2.5	2.5		
Chromium	0.50	.025	.05		
Cobalt	2.5	.01	.025		
Copper	1.3	.05	.05		
Iron	15	.75	.85		
Lead	1.0	.05	.05		
Magnesium	250	1.8	1.8		
Manganese	0.75	.013	.025		
Molybdenum	2.5	.015	.025		
Nickel	2.0	.02	.025		
Potassium	500	5	10		
Selenium	1.0	.1	.12		
Silver	0.50	.025	.041		
Sodium	500	13	25		
Strontium	0.50	.013	.025		
Thallium	0.50	.05	.055		
Tin	2.5	.025	.045		
Titanium	0.50	.025	.025		
Vanadium	2.5	.025	.025		
Zinc	1.0	.15	.15		

Associated samples MP41004: FA97452-3, FA97452-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Methods: SW846 6010D Matrix Type: SOLID Units: mg/kg

Prep Date: 07/23/22 07/23/22

Metal	FA97480-1 Original		RPD	QC Limits	FA97480-		Spikelot MPFLICP2		QC Limits
Aluminum									
Antimony	anr								
Arsenic	6.8	8.8 (a)	25.6 (b)	0-20	6.8	79.2 (a)	84	86.2	80-120
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium									
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron									
Lead	anr								
Magnesium									
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Potassium									
Selenium	anr								
Silver	anr								
Sodium									
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zinc	anr								

Associated samples MP41004: FA97452-3, FA97452-4

Results < IDL are shown as zero for calculation purposes

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Sample dilution required due to difficult matrix.
- (b) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Methods: SW846 6010D

Prep Date:

Matrix Type: SOLID

07/23/22

Units: mg/kg

Metal	FA97480-1 Original MSD	Spikelot MPFLICP2 % Re	MSD C RPD	QC Limit
Aluminum				
Antimony	anr			
Arsenic	6.8 85.8 (a)	87 90.9	8.0	20
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP41004: FA97452-3, FA97452-4

 ${\tt Results} \, < \, {\tt IDL} \, \, {\tt are } \, \, {\tt shown} \, \, {\tt as} \, \, {\tt zero} \, \, {\tt for} \, \, {\tt calculation} \, \, {\tt purposes} \, \,$

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Sample dilution required due to difficult matrix.

5.2.3

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Methods: SW846 6010D Matrix Type: SOLID Units: mg/kg

Prep Date:

07/23/22

Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony	anr			
Arsenic	95.8	100	95.8	80-120
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP41004: FA97452-3, FA97452-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

5.2.4

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Methods: SW846 6010D Matrix Type: SOLID Units: ug/l

Prep Date:

07/23/22

Metal	FA97480-1 Original		5:25	%DIF	QC Limits
Aluminum					
Antimony	anr				
Arsenic	141	139		1.3	0-10
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium					
Chromium	anr				
Cobalt	anr				
Copper	anr				
Iron					
Lead	anr				
Magnesium					
Manganese	anr				
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium	anr				
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium	anr				
Zinc	anr				

Associated samples MP41004: FA97452-3, FA97452-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

POST DIGESTATE SPIKE SUMMARY

Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Methods: SW846 6010D Matrix Type: SOLID Units: ug/l

Prep Date:									07/23/22	2
Metal	Sample ml	Final ml	FA97480- Raw	-1 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic	9.8	10	141.1	138.278	232.6	0.2	5	100	94.3	80-120
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										

Associated samples MP41004: FA97452-3, FA97452-4

Zinc

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (**) Corr. sample result = Raw * (sample volume / final volume) (anr) Analyte not requested

Page 1

Orlando, FL 09/12/22

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

M & D Industrial Services, LLC

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

e0091

SGS Job Number: FA98581

Sampling Date: 09/01/22

Report to:

M & D Industrial Services, LLC 5896 Azalea St Port Orange, FL 32127

vsanagustin@mdindustrialservices.com; dschill@mdindustrialservices.com

ATTN: Don Schill

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Dwayne Foster 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Sections:

Table of Contents

-1-

Section 1: Sample Summary	
Section 2: Summary of Hits 4	
Section 3: Sample Results	
3.1: FA98581-1: WEST DITCH WATER	
Section 4: Misc. Forms	
4.1: Chain of Custody	
Section 5: Metals Analysis - QC Data Summaries 10	0
5.1: Prep QC MP41177: Fe	1

Sample Summary

M & D Industrial Services, LLC

Job No: FA98581

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL Project No: e0091

Sample Number	Collected Date	Time By	Received C		rix e Type	Client Sample ID		
FA98581-1	09/01/22	09:14 VA	09/01/22	AQ	Surface Water	WEST DITCH WATER		

Summary of Hits Job Number: FA98581

Account: M & D Industrial Services, LLC

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Collected: 09/01/22

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method
FA98581-1	WEST DITCH W					
Iron		698	300	17	ug/l	SW846 6010D

Orlando, FL

Section 3 ω

Sample Results	
Report of Analysis	

Report of Analysis

Page 1 of 1

Client Sample ID: WEST DITCH WATER

Lab Sample ID:FA98581-1Date Sampled:09/01/22Matrix:AQ - Surface WaterDate Received:09/01/22Percent Solids:n/a

Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	698	300	17	ug/l	1	09/08/22	09/09/22 LM	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18900

(2) Prep QC Batch: MP41177

PQL = Practical Quantitation Limit MDL = Method Detection Limit U = Indicates a result < MDL

I = Indicates a result > = MDL but < PQL

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc - Orlando

FA98581

SGS

Chain of Custody

SGS - ORLANDO JOB#: PAG

		37-425-6700 FAX:	407-425-0707		SGS - ORLANDO	Quote #	SKIFF#	
Client / Reporting Information		Project Infor	mation			Analytical In	formation	Matrix Codes
Company Name: MAP Inclustrial Services	Street 12 mile. City Cork	oward,	Fatilize,	Soill Site				DW - Drinking Water
Address: 5896 Azalea St.	Street 12 mile	south of	Rag an	d SR82				GW - Ground Water
City: Port Dranse State: FT Zip: 32127	city (ork	screw	Sta	ite FL				WW - Water SW - Surface
Project Contact: V Sanagustin @ medindustrial suvices. (0.	Project #	50091					1 1 1 1	Water SO - Soil
Project Contact: V Sanagustin @ metrindustrial suvices. 60 Phone #: 813.842-5520	Fax #		-		(2)			SL- Sludge OI - Oil
Sampler(s) Name(s) (Printed) Sampler 1: SA Sampler 2:	Client Purchase D	order# VSA	E009	/	9			LIQ - Other Liquid AIR - Air
	COLLECTION		CONTAINER INFORM	ATION ISI	2			SOL - Other Solid
SGS Offination Sample # Field ID / Point of Collection DATE	SAMPLED BY:	TOTAL # OF MATRIX BOTTLES	OTHER IONE ICI	NO3 2SG¢ JAOH+ZNU I WATER EOH	Iron			LAB HOE ONLY
Sample # Field ID / Point of Collection DATE	TIME BY:	MATRIX BOTTLES	0 2 1 2	I I Z 8 Z		Q-		LAB USE ONLY
1 WEST DITCH WATER 09-01-22	0914 VSA	SW 1		/	/			
Turnaround Time (Business days)		Data Deliv	verable Infor	mation		Co	mments / Remarks	
10 Day (Business) Approved By: / Date:		MMERCIAL "A"					1	1,
(7 Day)	Access 100 miles	MMERCIAL "B"		IS QC)	INIO	TAL ASSESSM	TANT /V	$\overline{}$
5 Day 3 Day <i>RUSH</i>		DT1 (EPA LEVE) LT1 (EPA LEVE			1741	INL ASSESSIVI	EINI	-
2 Day RUSH	EDD		,				-	m/
1 Day RUSH					LAE	SEL VERIFICAT	rion	1//
Other Rush T/A Data Available VIA Email or Lablink								
		nted below each		change possession uished By/Affiliatio	n, including courier d		Descined Dulastilistic	
1 (was A (July 9/1/22 /22) 2 100	1/18	: 5GS	3	лэлеч Бу/АнНапо	11	Date Time:	Received By/Affiliatio	"
Received By/A	filiation		Reling	uished By/Affiliatio	n	Date Time:	Received By/Affiliation	11
5 Lab Use Only: Cooler Temperature (s) Celsius (corrected): 415	CALL		7				8	V (40)
Last Use Unity . Cooler remperature (s) Ceisius (corrected): 1 1		D-SMT-0001-03-F	ORM-COC (4).	xis Rev 031318		<u>l</u>	ttp://www.sqs.com/en/te	rms-and-conditions

FA98581: Chain of Custody

Page 1 of 2

SGS Sample Receipt Summary

				RIAL SERVICES Project: 1	10112 110 1 2111121211 01	Project: HOWLAND FERTILIZER SPILL SITE				
Pate / Time Received: 9/1/2022 12:25:00 PM			Delivery Meth	od: DROPOFF Airbill #'s:						
Therm ID: IR 1;			Therm CF: 0.	6;	# of Coolers: 1					
Cooler Temps (Raw Measured	ı)° C : C	ooler 1: (4.8);							
Cooler Temps (Corrected	a)° C : C	ooler 1: (5.4);							
Cooler Information	<u>Y</u> 0	or N_		Sample Information	Y or N	_N/A_				
Custody Seals Present	✓			Sample labels present on bottles	<u> </u>					
Custody Seals Intact	✓			Samples preserved properly	v –					
Temp criteria achieved	~	П		Sufficient volume/containers recvd for						
Cooler temp verification	IR Gun	_		4. Condition of sample	Intact					
5. Cooler media	Ice (Ba	g)		5. Sample recvd within HT	~					
				6. Dates/Times/IDs on COC match Sar	nple Label					
rip Blank Information	<u>Y</u> 0	r N	<u>N/A</u>	7. VOCs have headspace		\checkmark				
1. Trip Blank present / cooler			✓	8. Bottles received for unspecified tests						
2. Trip Blank listed on COC			✓	9. Compositing instructions clear		\checkmark				
	w	or S	_N/A_	10. Voa Soil Kits/Jars received past 48	hrs?	\checkmark				
2 Time Of TD Described				11. % Solids Jar received?		\checkmark				
3. Type Of TB Received			✓	12. Residual Chlorine Present?		\checkmark				
Misc. Information										
Number of Encores: 25-Gram		5-Gra	m	Number of 5035 Field Kits:	Number of Lab Filtered Metals:					
Test Strip Lot #s:	pH 0-3	230	315	pH 10-12219813A	Other: (Specify)					
Residual Chlorine Test Strip Lot	#:									
Comments										

FA98581: Chain of Custody

Page 2 of 2

Orlando, FL

Section 5

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA98581

Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/08/22 09/08/22

Metal	RL	IDL	MDL	MB raw	final	MB raw	final
Aluminum	200	14	14				
Antimony	6.0	1	1				
Arsenic	10	1.3	1.3				
Barium	200	.5	1				
Beryllium	4.0	.1	. 2				
Cadmium	5.0	.1	. 2				
Calcium	1000	50	50				
Chromium	10	.5	1				
Cobalt	50	. 2	. 2				
Copper	25	1	1				
Iron	300	15	17	-0.60	<300	7.2	<300
Lead	5.0	1	1.1				
Magnesium	5000	35	35				
Manganese	15	. 25	1				
Molybdenum	50	.3	.3				
Nickel	40	. 4	. 4				
Potassium	10000	100	200				
Selenium	10	2	2.9				
Silver	10	.5	.7				
Sodium	10000	250	500				
Strontium	10	. 25	.5				
Thallium	10	1	1.4				
Tin	50	.5	1				
Titanium	10	.5	1				
Vanadium	50	.5	.6				
Zinc	20	3	4.4				

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

Page 1

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/08/22 09/08/22

Metal	FA98581- Original		RPD	QC Limits	FA98581- Original		Spikelot MPFLICP2		QC Limits
Aluminum	anr								
Antimony									
Arsenic	anr								
Barium	anr								
Beryllium									
Cadmium	anr								
Calcium									
Chromium	anr								
Cobalt									
Copper									
Iron	698	688	1.4	0-20	698	26300	26000	98.5	80-120
Lead	anr								
Magnesium									
Manganese									
Molybdenum									
Nickel									
Potassium									
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium									
Tin									
Titanium									
Vanadium									
Zinc	anr								

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Methods: SW846 6010D Units: ug/l

Matrix Type: AQUEOUS

Prep Date:

09/08/22

Metal	FA98581-1 Original		Spikelot MPFLICP2		MSD RPD	QC Limit
Aluminum	anr					
Antimony						
Arsenic	anr					
Barium	anr					
Beryllium						
Cadmium	anr					
Calcium						
Chromium	anr					
Cobalt						
Copper						
Iron	698	26800	26000	100.4	1.9	20
Lead	anr					
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium	anr					
Silver	anr					
Sodium	anr					
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

09/08/22 Prep Date:

Metal	BSP Result	Spikelot MPFLICP2		QC Limits
Aluminum	anr			
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron	25600	26000	98.5	80-120
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Page 1

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/08/22

Metal	FA98581-1 Original		%DIF	QC Limits
Aluminum	anr			
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron	698	642	8.1	0-10
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

POST DIGESTATE SPIKE SUMMARY

Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Methods: SW846 6010D Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/08/22

Metal	Sample ml	Final ml	FA98581- Raw	-1 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron	9.8	10	698	684.04	3912	0.2	150	3000	107.6	80-120
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (**) Corr. sample result = Raw * (sample volume / final volume) (anr) Analyte not requested

Attachment 5 – Material Data Sheet of Spilled Fertilizer and Arsenic Content in Plant Water

September 1, 2022 Project No. E0091

CSL 7

Guaranteed Analysis #91419

Magnesium (Mg) 1.50% 1.5% Water Soluble Mg **Chelated Iron (Fe)** 3.50% Chelated Manganese (Mn) 0.75% **Chelated Zinc (Zn)** 0.75% **Chelated Copper (Cu)** 0.05% Boron (B) 0.10% Molybdenum (Mo) 0.001% **Combined Sulfur (S)** 4.00%

Derived From:
Magnesium Citrate, Iron Citrate,
Manganese Citrate, Zinc Citrate,
Copper Citrate, Sodium Borate,
Sodium Molybdate.

DIRECTIONS FOR USE:

Lawns, Turf, Golf Courses: Maintenance Rate - Use 1 to 2 ounces per 1,000 sq. ft. in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended). Severe Deficiency - Use 2 to 4 ounces per 1,000 sq. ft. in enough water for thorough coverage. Repeat applications as needed. Four to six applications annually are recommended.

Tees and Greens: Use 1 to 2 ounces per 1,000 sq. ft. as a maintenance rate in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended).

Ornamental Plants: Use 1 to 2 quarts per 100 gallons of water and apply as a drench or foliar application. Repeat application as needed.

CAUTIONS: Avoid getting in eyes, mucous membranes, or on the skin. Use with adequate ventilation. Keep container capped when not in use. Do not contaminate water supplies.

ANTIDOTES: Skin or eye contact: Flush thoroughly with water and see a physician. Internal: Induce vomiting if conscious and get medical attention at once. CAUTION: Avoid spraying painted or concrete surfaces as staining may occur. CONDITIONS OF SALE: Seller warrants that this product consists of the ingredients specified and is reasonably fit for the purpose stated on this label when used in accordance with directions under normal conditions of use. No one, other than the officer of Seller, is authorized to make any warranty, guarantee, or directions concerning this product. Because the time, place, rate of application and other conditions of use are beyond Seller's control, Seller's liability from handling, storage and use of this product is limited to replacement of product or refund of purchase price.

Weight per gallon: 10.54 Lbs

Manufactured By: F1016 Howard Fertilizer and Chemical Co., Inc. 8306 S. Orange Ave. Orlando, FL 32809

Gator Brand is a registered trademark of Howard Fertilizer and Chemical Co, Inc.

Lot Number	Net Contents	Gal/Liters	
LOT NUMBER	Net Contents	Gal/Liters	

Water Analysis

Waters Agricultural Laboratories, Inc

257 Newton Hwy | Camilla, GA 31730- | Phone (229) 336-7216

"Improving Growth...
With Science"

Received: 12/13/2019

Processed: 12/16/2019

Customer: 4356

THE LIQUID PLANT INC

1000 COUNTY RD. 846 E IMMOKALEE, FL 34142 UNITED STATES Sample ID: 1

Grower: THE LIQUID PLANT

Farm ID: Field ID:

Lab Number: 5744

Analytical Results

Analyte	Result	Units
Arsenic	0.017	ppm

Comments

Analysis: Arsenic: EPA 7061A

MDL(ppm): As 0.001

SITE ASSESSMENT REPORT **Road Fertilizer Spill** 1/2 Mile South of SR-29 and SR-82 Corkscrew, Collier County, Florida 34142 FDEP OER Report No. OHMIT #2019-3I-64280Z

prepared for

Howard Fertilizer and Chemical Company, Inc. 8306 South Orange Avenue Orlando, FL 32809

prepared by

M & D Industrial Services, LLC 5896 Azalea Street Port Orange, Florida 32127

January 31, 2020

Project No. E0113 January 31, 2020

Table of Contents

Introduction	. 3
Summary of Findings / Recommendations	. 3
Certification by Responsible Authority	. 4
Figures	
Figure 1 – Location of Spill Site Figure 2 – Soil, Groundwater, Surface Water Sample Locations Figure 3 – Analytical Results	
Tables	
Table 1 – Summary of Soil Lab Data Table 2 – Summary of Groundwater Lab Data Table 3 – Summary of Surface Water Lab Data	
Attachments	
Attachment 1 – Material Data Sheet of Spilled Fertilizer Attachment 2 – October 4, 2019 Email from FDEP's Lina Cerquera Attachment 3 - Temporary Monitor Well Construction Logs Attachment 4 - Monitor Well Sampling Logs Attachment 5 – Lab Reports	
	Summary of Findings / Recommendations. Certification by Responsible Authority

Project No. E0113 Page 2 of 7 January 31, 2020

1.0 Introduction

M&D Industrial Services, LLC (M&D) was requested by Howard Fertilizer and Chemical Company, Inc. (Howard) to respond to requests from FDEP to sample and analyze soil, sediments, groundwater, and surface water located at a roadside spill. The spilled fertilizer was owned by Howard Fertilizer and Chemical Company. In early October, 2019, while in transit and after making an immediate stop, a truck carrying two (2) - 300 gallon totes containing a fertilizer product identified as Gator Excel XL CSL 7 spilled on State Road SR-29 approximately ½ mile south of the intersection of State Road SR-82 and SR-29 in Corkscrew, Collier County. A material data sheet of the fertilizer product is enclosed as **Attachment 1**. **Figure 1** is a site location map showing the spill site.

On October 4, 2019, Lina Cerquera from FDEP's Emergency Response Division emailed Howard Fertilizer a request to conduct a site assessment at the spill site. A copy of the email is included in **Attachment 2**.

Personnel from M&D pulled samples of soil, surface water or ditch water on October 14, 2019. M&D later returned to the spill site on October 30, 2019 and installed 3 temporary monitor wells. The 3 temporary monitor wells were sampled the next day, October 31, 2019. A background surface water or ditch water sample was also pulled on October 31. Construction Logs for the 3 temporary monitor wells are included in **Attachment 3**. Monitor Well sampling logs are included in **Attachment 4**.

2.0 Summary of Findings / Recommendations

Lab results for all the samples pulled in October, 2019 are summarized in **Tables 1**, **2**, and **3**. **Table 1** presents the lab results of the soil and sediment samples. **Table 2** presents the lab results for the groundwater samples. **Table 3** presents the lab results of the ditch water or surface water samples. Copies of the lab reports are included in **Attachment 5**.

Results in **Table 1** shows no soil samples with results above the residential soil cleanup target levels (SCTL). Only the "West Ditch Sediments" sample showed an arsenic level of 3.4 mg/kg, above the residential soil cleanup target level of 2.1 mg/kg. Since "West Ditch Sediments" is a sediment sample and not a soil sample, it is requested that the Department inform M&D and Howard of the appropriate cleanup target level.

If the Department determines that the 3.4 mg/kg is the appropriate SCTL for sediments, it is requested that the Department consider that arsenic may be naturally occurring in the area. Background sediment samples may be pulled near the site to substantiate the claim that elevated levels of arsenic may be naturally occurring in the area.

Plant water from Howard Fertilizer in Immokalee, the facility that manufactured the spilled fertilizer was sampled and then analyzed for arsenic on December 12, 2019. Result was 0.017 ppm. A copy of the lab result is included in Attachment 5.

Groundwater results in **Table 2** show the sample pulled from monitor well TMW-W had an arsenic level of 14.2 ug/lit, above the arsenic groundwater cleanup target level of 10 ug/lit.

January 31, 2020 Project No. E0113

Iron was 12,900 ug/lit, above the iron GCTL of 300 ug/lit. Manganese in samples from TMW-West (TMW-W) and TMW-East (TMW-E) was 55.1 ug/lit and 106 ug/lit respectively. Both are above the Manganese GCTL of 50 ug/lit. M&D recommends that TMW-W, TMW-E, and TMW-B be sampled for arsenic, iron, and manganese to asses contaminant levels 3 months later.

Surface water results in **Table 3** shows copper levels in the sample from the East Ditch water was 29.5 ug/lit. Table 3 also shows that the Copper standard may either be 30.5 ug/lit or 21.5 ug/lit. It is requested that the Department inform M&D of the appropriate surface water standard for copper at the East Ditch Water sample. M&D also recommends that another sample be pulled for copper analysis at the same East Ditch Water sample location. M&D believes the copper level may decrease after 3 months.

Table 3 also shows the iron levels in the West and East Ditch Water are 2,240 ug/lit and 4,160 ug/lit respectively. Both are above the Class III surface water standard for iron of 1.0 ug/lit. It is important to note that a background sample identified as Northeast Ditch Water had an iron level of 171 I ug/lit which is already above the 1.0 ug/lit surface water standard for iron. M&D recommends resampling the same 3 surface water locations and analyzing for iron to assess iron levels 3 months later.

M&D plans to survey the 3 temporary wells and measure water levels at the next site visit to help assess groundwater elevations and direction of groundwater flow at the spill site.

3.0 Certification by Responsible Authority:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Michael Brooks

Compliance Officer

Howard Fertilizer & Chemical Company, Inc.

8306 South Orange Avenue

Orlando, FL 32809

Victor L. San Agustin, P.E., C.H.M.M. Date

Florida Professional Engineer No. 40226

M & D Industrial Services, LLC.

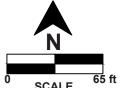

5896 Azalea Street

Port Orange, FL 32127

4.0 Figures

January 31, 2020 Project No. E0113
Page 5 of 7

Location of Spill Site


PROJECT NO.:

DATE: Jan 22, 2020

FIGURE 1

M&D INDUSTRIAL SERVICES, LLC.

Location of Samples Pulled

PROJECT NO.: E0091

FIGURE 2 DATE: Jan 22, 2020

M&D INDUSTRIAL SERVICES, LLC.

5.0 Tables

January 31, 2020 Project No. E0113
Page 6 of 7

Table 1 - Summary of Soil Lab Data Howard Fertilizer Spill Site Approx 1/2 Mile south of SR-29 & SR-82 Intersection, Corkscrew, Collier County

	Sample Date	Arsenic (mg/kg)	Beryllium (mg/kg)	Boron (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Fluoride (mg/kg)	Iron (mg/kg)	Lead (mg/kg)	Manganese (mg/kg)	Molybdenum (mg/kg)	Nickel (mg/kg)	Sodium (mg/kg)	Uranium (mg/kg)	Zinc (mg/kg)	Nitrogen, Ammonia (mg/kg)	Nitrogen, Nitrate (mg/kg)	Nitrogen, Nitrite (mg/kg)	Sulfate (mg/kg)
Background West Soil, 0-1 ft BLS	10/14/2019 10/14/2019	0.56 2.1	0.033 I 0.039 I	1.7 U 53.1	0.024 U 0.021 U	2.1	1.2	1.4 U 3.0 I	859 2,050.0	5.1	2.0	0.024 U 0.081 I	0.53 I 0.78 I	24 U 36.6 I	ND ND	3.2 10.2	30.5 69.9	2.8 U 2.8 U	2.8 U 2.8 U	34.0 U 252.0
West Soil, 1-2 ft BLS West Ditch Sediments	10/14/2019	1.2	0.028 U 0.21 I	1.9 U 4.3 U	0.021 U 0.028 U 0.061 I	1.5	3.8	1.5 U 3.7 U	1,030.0 4,770.0	4.8 8.1	42.6 292	0.32 I 0.39 I	0.62 I 3.8 I	38.5 I 232 I	9.31 9.47 J	49.6 362.0	15 276.0	3.0 U 7.4 U	3.0 U 7.4 U	440.0 1,190.0
East Soil, 0-1 ft BLS East Soil, 1-2 ft BLS	10/14/2019 10/14/2019	0.51 0.13 I	0.051 I 0.026 U	10.9 I 1.7 U	0.067 I 0.026 U	5.8 0.20 I	9.6 0.094 I	1.4 U 1.4 U	1,300.0 134.0	19.8 0.21 I	249 0.26 I	0.27 I 0.026 U	2.8 0.073 I	70.8 I 26.0 U	3.87 J 1.84 J	276.0 0.22 I	183.0 17.5	10.8 3.6 I	2.9 U 2.9 U	1,240.0 34.0 U
East Ditch Sediments	10/14/2019	2.2	0.12 I	10.2 I	0.14 I	12.0	77.1	8.1 I	2,010.0	27.2	36.2	0.73 I	3.2 I	207 I	10.8 J	48.4	24.6	10.0 U	10.0 U	120 0 U
Residential SCTL Industrial SCTL Alternate SCTL		2.1 12.0	120.0 1,400.0	17,000.0 430,000.0	82.0 1,700.0	210.0 470.0	150.0 89,000.0	840.0 130,000.0	53,000.0	400.0 1,400.0	3,500.0 43,000.0	440.0 11,000.0	340.0 35,000.0	20,000.00	110.0 820.0	26,000.0 630,000.0	35,000.0 880,000.0	140,000.0	8,700.0 220,000.0	2,200.00
Leachability SCTL		***	63.0	***	7.5	38.0	***	6,000.0	***	***	***	***	130	320,000.00	***	***	***	***	***	None

^{*} Contaminant is not a health concern for this exposure scenario.

^{***} Leachability values may be derived using the SPLP Test to calculate site specific SCTLs or may be determined using TCLP in the event oily wastes are present.

Table 2 - Summary of Groundwater Lab Data Immokalee Spill Site Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron a (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
TMW-W	10/31/2019	14.2	0.20 U	291.0	0.20 U	2.0 I	1.0 U	560.0 I	12,900.0	9.8	55.1	4.1 IB	26.2 I	28,000.0	10.3 J	54.8	1,800.0	250 U	250 U	43,600.0
TMW-E	10/31/2019	1.3 U	0.20 U	63.0 U	0.20 U	1.8 I	1.0 U	260	864.0	4.6 I	106.0	3.6 IB	0.40 U	2,270 I	10.3 J	42.7	170 I	50.0 U	50.0 U	8,100.0
TMW-B	10/31/2019	1.3 U	0.20 U	74.1 I	0.20 U	2.3 I	1.0 U	470.0	4,170.0	4.6 I	28.9	0.90 IB	0.40 U	23,800.0	8.78 U	4.4 U	500.0	50.0 U	50.0 U	5,000.0
GCTL		10.0	4.0	None	5.00	100.0	1,000.0	4000.0	300.0	15.0	50.0	None	100.0	160,000.0	30.0	5,000.0	None	10,000.0	1,000.0	250,000.0

Table 3 - Summary of Surface Water Lab Data Corkscrew Spill Site Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron a (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
West Ditch Water	10/14/2019	3.2 I	0.20 U	367.0	0.20 U	1.3 I	1.8 I	0.30 U	2,240.0	1.1 U	462.0	2.1 I	10.6 I	22,500.0	14.5	65.0	0.28	0.25 U	0.25 U	23.6
East Ditch Water	10/14/2019	5.1 I	0.20 U	63.0 U	0.20 U	1.0 U	29.5	0.30 U	4,160.0	1.1 U	1,460.0	0.30 U	0.90 I	27,300.0	15.4	54.8	0.060 U	0.25 U	0.25 U	3.0 U
Northeast Ditch Water	10/31/2019	2.9 I	0.20 U	75.9 I	0.20 U	1.0 U	1.0 U	280	171 I	4.0 I	45.7	0.30 U	0.40 U	13,200.0	2.96 U	5.6 I	62.0 I	260	50 U	5,600.0
Class III Surface Water S	tandard	50.0	0.1	None	0.10	11.0	2.9	10.0	1.0	0.5	None	None	16.1	None	None	37.0	310.6	None	None	None
			annual ave		or	(Note 2)	or			or			or			or				
					0.76		30.5			18.6			168.5			387.8				
Class III West Ditch Water	er Surface Wat	er Standar	·d		0.58		22.3			11.6			123.5			284.1				
Class III East Ditch Water	r Surface Wate	er Standar	d		0.56		21.5			11.0			119.0			273.6				
					(Note 1)		(Note 3)			(Note 4)			(Note 5)			(Note 6)				
Note 1 - Cd is 0.1 if hardness	e ic cot at 25 me	r/L Cd is 0	76 if hardness	ic cot at 400	0.0 mg/L Lab	report fa6807	D chowe W	lect Ditch wat	or hardness to	ested 277 m	or/Land East Dit	oh water hardnes	tooted 265	ma/1						

Temp deg C

pН

7.15

(Note 7)

Note 1 - Cd is 0.1 if hardness is set at 25 mg/l. Cd is 0.76 if hardness is set at 400.0 mg/l. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 2 - Applies to hexavalent chromium

Note 3 - Cu is 2.9 if hardness is set at 25 mg/l. Cd is 30.5 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l. Note 4 - Pb is 0.5 if hardness is set at 25 mg/l. Pb is 18.6 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 5 - Ni is 16.1 if hardness is set at 25 mg/l. Ni is 168.5 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 6 - Zinc is 37.0 if hardness is set at 25 mg/l. Zinc is 387.8 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 7 - Lab report fa68973R shows pH of West Ditch water sample was 7.15 and pH of East Ditch water sample was 7.36. Nitrogen, Ammonia standard shown is based on a pH of 7.15

6.0 Attachments

January 31, 2020 Project No. E0113
Page 7 of 7

Attachment 1 – **Material Data Sheet of Spilled Fertilizer**

Project No. E0113 Page 8 of 7 January 31, 2020

CSL 7

Guaranteed Analysis #91419

Magnesium (Mg) 1.50% 1.5% Water Soluble Mg **Chelated Iron (Fe)** 3.50% Chelated Manganese (Mn) 0.75% **Chelated Zinc (Zn)** 0.75% **Chelated Copper (Cu)** 0.05% Boron (B) 0.10% Molybdenum (Mo) 0.001% **Combined Sulfur (S)** 4.00%

Derived From:
Magnesium Citrate, Iron Citrate,
Manganese Citrate, Zinc Citrate,
Copper Citrate, Sodium Borate,
Sodium Molybdate.

DIRECTIONS FOR USE:

Lawns, Turf, Golf Courses: Maintenance Rate - Use 1 to 2 ounces per 1,000 sq. ft. in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended). Severe Deficiency - Use 2 to 4 ounces per 1,000 sq. ft. in enough water for thorough coverage. Repeat applications as needed. Four to six applications annually are recommended.

Tees and Greens: Use 1 to 2 ounces per 1,000 sq. ft. as a maintenance rate in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended).

Ornamental Plants: Use 1 to 2 quarts per 100 gallons of water and apply as a drench or foliar application. Repeat application as needed.

CAUTIONS: Avoid getting in eyes, mucous membranes, or on the skin. Use with adequate ventilation. Keep container capped when not in use. Do not contaminate water supplies.

ANTIDOTES: Skin or eye contact: Flush thoroughly with water and see a physician. Internal: Induce vomiting if conscious and get medical attention at once. CAUTION: Avoid spraying painted or concrete surfaces as staining may occur. CONDITIONS OF SALE: Seller warrants that this product consists of the ingredients specified and is reasonably fit for the purpose stated on this label when used in accordance with directions under normal conditions of use. No one, other than the officer of Seller, is authorized to make any warranty, guarantee, or directions concerning this product. Because the time, place, rate of application and other conditions of use are beyond Seller's control, Seller's liability from handling, storage and use of this product is limited to replacement of product or refund of purchase price.

Weight per gallon: 10.54 Lbs

Manufactured By: F1016 Howard Fertilizer and Chemical Co., Inc. 8306 S. Orange Ave. Orlando, FL 32809

Gator Brand is a registered trademark of Howard Fertilizer and Chemical Co, Inc.

Lot Number	Net Contents	Gal/Liters	
LOT NUMBER	Net Contents	Gal/Liters	

Attachment 2 -October 4, 2019 Email from **Lina Cerquera of FDEP Office of Emergency Response**

Project No. E0113 Page 9 of 7 January 31, 2020

Victor San Agustin

From:

Michael Brooks < MBrooks@howardfert.com>

Sent:

Friday, October 4, 2019 1:06 PM

To:

Victor San Agustin Cerquera, Lina

Cc: Subject:

FW: FDEP OER OHMIT#2019-3I-64280Z - Howard Fertilizer - SR-82 & SR-29 - Fertilizer

Discharge

Importance:

High

From: Cerquera, Lina <Lina.Cerquera@FloridaDEP.gov>

Sent: Friday, October 04, 2019 1:04 PM

To: Michael Brooks < MBrooks@howardfert.com>

Subject: FDEP OER OHMIT#2019-3I-64280Z - Howard Fertilizer - SR-82 & SR-29 - Fertilizer Discharge

Importance: High

*** External Email ***

Good afternoon Mr. Brooks,

The following are the determined Constituents of Concern (COC) relating the 500 gallon Fertilizer release reported near the intersection of SR-29 & SR-82. The department used the provided SDS & material labels, as well as commonly found composition impurities surrounding these materials in the COC determination:

- Sodium
- Nitrate
- Nitrite
- Sulfate
- Manganese
- Iron
- Copper
- Zink
- Molybdenum
- Boron
- Ammonia
- Fluoride
- Arsenic
- Cadmium
- Chromium
- Lead
- Nickel
- Beryllium
- Uranium

The department will like to see the areas reported to be impacted by the liquid fertilizer accidental release (North & South Bound shoulder of the roadway near the spill site) be assessed for the specified COC's to determine whether they are found to be above the department's cleanup target levels and will need to be removed.

Below is a list of contractors who can help you put together a path moving forward.

24-HOUR EMERGENCY RESPONSE CONTRACTORS LIST

Emergency Response Contractors are listed by the county in which they maintain an office.

Most Emergency Response Contractors can provide service to other counties and some provide service statewide.

OER does not endorse any contractor and a firm's absence or presence does not imply prejudice or impropriety.

Please follow this link: https://floridadep.gov/oer/oer/content/contractor-list

Please feel free to call me if you have any questions.

Lina Cerquera

Florida Department of Environmental Protection South District – Office of Emergency Response Environmental Consultant Lina.Cerguera@FloridaDEP.gov

Office: 239-344-5707

SWO (24 Hour): 800-320-0519

From: Angelica Betancourt < aprince@liquidplant.com >

Sent: Thursday, October 3, 2019 2:17 PM

To: Goense, Patricia < Patricia. Goense@FloridaDEP.gov>

Subject: Requested SDS

Please see attached SDS..

Thank you,

Angelica Betancourt The Liquid Plant, Inc. 1001 County Road 846 Immokalee, FI 34142 P:(239)657-3181 F:(239)657-6898

Email sent interoffice must adhere to the Howard Fertilizer and Chemical Email Policy Link

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the System Administrator. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. If you are not the intended recipient you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

Attachment 3 – **Temporary Monitor Well Construction Logs**

Project No. E0113 Page 10 of 7 January 31, 2020

SITE ID	TMW-B	_station name	Howard Fer Spill Site-Co		THER ID T	ИW-Backgı	round
7.5 QUAD	N/A	COUNTY	Collier	County	ń	STATE	Florida
1.7	Howard Fertilize	Zeri -					
WELL I	RILLING						
START	DRILLING:	DATE10_	/ 30 / 20	19 TIME	<u>12 :10</u>	pm_EST	
COMPI	ETE DRILLING:	DATE10	/ 30 / 20	19TIME	<u>12</u> :30	pm EST	
EQUIPMI	ENT/MATERIAL	S DECONTAMII	NATION PROC	CEDURES:			
DETER	RGENT WASH	Alconox/Water	STEAM CI	EANED	N/A	OTHE	R N/A
DRILLIN	G METHOD:						
Х	AUGER (TYPE:	Hand Auger): R	OTARY (TY	PE:	
	- PERCUSSION (TY				OTHER		
	LE DATA:	100		<u> </u>	9		- 25
			800 S				F 00 89
BOREHO	LE DIAMETER:	4.0	inches;	TOTAL DEPTH	OF BOREH	OLE:	5.23 fe
APPROXI	MATE DEPTH TO	THE WATER TA	BLE: 2	2.5 feet	Well So	reen Depth	n: 0 to 5.2 ft
	MA	TERIAL DESCRIPT	ION		FROM	TO	THICKNESS
SAND	SILT, CLAY ETC	SORTING	COLOR	WET/DRY	feet	ket	feet
	Sand/Silt		Black	Dry	0	1.0	1.0
	Sand		White Sand	Dry	1.0	2.0	1.0
	Sand		Tan Sand	Wet	2.0	5.2	3.2
		ĺ			1		
		22			5.5		
		2 23					
						70	
		D 21				50	
						50	
						50	

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

SITE ID	TMW-E	STATION NAME	Howard Fe		OTHER ID_TI	MW-East	MAY 29
7 <i>5</i> QUAD		COUNTY	0 11:	r County	EV -OUTGOING LAND	STATE	Florida
511	Howard Fertilize	98	20	DRILLER	Temporary M&D Indus	Monitor W	ell by es, LLC
WELL I	DRILLING						
START	DRILLING:	DATE10	/ 30 / 20	19 TIME	10 : 41	am EST	
COMP	LETE DRILLING:	DATE10	/ 30 / 20	19 TIME	1100	pm EST	
EQUIPM!	ENT/MATERIAL	S DECONTAMI	NATION PRO	CEDURES:			
DETER	RGENT WASH/	Alconox/Water	STEAM CI	LEANED	N/A	OTHE	R <u>N/A</u>
	G METHOD:		-95				76
Х	_ AUGER (TYPE:	Hand Auger); F	ROTARY (TY	PE:	
	PERCUSSION (TY				OTHER		
	LE DATA:	160		8 0 74	46 g	ř	- AN
		4.0		TATAL DEDT	I OE BODEU	OLE.	10.3
	LE DIAMETER: _					88	NS
APPROXI	MATE DEPTH TO	THE WATER T.	ABLE:	5)		coop b to	
			統	0.2 Tee	Well Scr	een - 5 to	10 ft bis
	MA	TERIAL DESCRIP	TION	J.Z fee	FROM	то	THICKNESS
SAND	MA), SILT, CLAY ETC	TERIAL DESCRIP	COLOR	WET/DRY	3/36/8//	to see	20%-050-080-55-005-0
ACC in contain	146,711-00	The second second	2 - A - D - D - D - D - D - D - D - D - D		FROM	то	THICKNESS
(SILT, CLAY ETC	The second second	COLOR	WET/DRY	FROM Ret	TO feet	THICK NESS
(Sand/Silt	SORTING	COLOR Dark Brown Darker	WET/DRY	FROM feet O	TO feet	THICKNESS feet 1.5
(Sand/Silt Sand/Silt	SORTING 	Dark Brown Darker Brown	WET/DRY Dry Dry	FROM Ret 0 1.5	TO feet 1.5	THICKNESS feet 1.5 1.0
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5
(Sand/Silt Sand/Silt Sand	SORTING 	Dark Brown Darker Brown Tan	WET/DRY Dry Dry	FROM Ret 0 1.5 2.5	1.5 2.5 4.0	1.5 1.0 1.5

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

SITE ID	TMW-W	_ STATION NAME	Howard Fer Spill Site-Co		OTHER ID T	MW-West	<u> </u>
7.5 QUAD	N/A	COUNTY	Collier	County	÷	STATE	Florida
OWNER	Howard Fertilize						Vell by ces, LLC
WELL I	RILLING						
START	DRILLING:	DATE10	/ 30 / 20	<u>19</u> тіме	10 : 15	am EST	
COMPL	ETE DRILLING:	DATE10	1 30 1 20	19TIME	10 :30	am EST	
EQUIPME	NT/MATERIAL	S DECONTAMI	NATION PROC	CEDURES:			
DETER	GENT WASH _	Alconox/Water	STEAM CI	EANED	N/A	OTHE	R N/A
	G METHOD:		D g			59 	75
X	AUGER (TYPE:	Hand Auger): E	OTARY (TY	PF.	
					OTHER_		
	PERCUSSION (TY			- 2	OTHER	7	23
	LE DATA:						
BOREHOI	E DIAMETER:	4.0	inches;	TOTAL DEPTI	H OF BOREH	OLE:	5.32 fe
APPROXII	MATE DEPTH TO	THE WATER TA	ABLE:3	3.5 fee	t		
	MA	ATERIAL DESCRIPT	TION	-	FROM	TO	THICKNESS
SAND	SILT, CLAY ETC	SORTING	COLOR	WET/DRY	feet	feet	feet
S	Sand/Silt		Black/Dark Brown	Dry	0	1.0	1.0
	Sand		White Sand	Dry	1.0	2.0	1.0
	Sand		Tan Sand	Wet	2.0	5.3	3.3
					6.5		
					94 9		

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

Attachment 4 – **Temporary Monitor Well Construction Logs**

Project No. E0113 Page 11 of 7 January 31, 2020

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	oward Ca	rtilizor C	nill			SITE A	pprov 1 mile	a South on	SD20 or	24 SD83 C	orkscrew, FL				
	oward Fe TMW-Bac		рш	CAMPLE	ID: TMV		pprox i iiiii	South on .		0-31-2019	OIKSCIEW, FL				
WELL NO:	TIVIVV-Dac	Rground		SAIVIPLE		GING DA	TA		DATE: TO	J-3 1-20 19					
WELL		TUBING	 }	WEL		N INTERVAL	STATIC [DEPTH	Р	URGE PUMP T	YPE				
	R (inches): 2.0		TER (inches):	3/8 DEP		feet to 5.0 fe				R BAILER:	PP				
(only fill ou	t if applicable)		·				TO WATER) X								
	NT VOLUME PU	JRGE: 1 EQU	= (IPMENT VOL.	5.34 fe = PUMP VOL	eet – .UME + (Tl	2.76 JBING CAPACI	feet) X TY X TI	0.16 UBING LENGTH	gallons/foot) + FLOW (t = 0.4 CELL VOLUME	gallons				
(only fill ou	t if applicable)			= 0.01 galle	ons + (0.0	06 gallons/foot	X 9.0	feet) +	0.2	gallons = (0.3 gallons				
	JMP OR TUBIN			P OR TUBING		PURGIN		PURGING		TOTAL VO					
DEPTH IN	WELL (feet):	4.0	DEPTH IN V	1 . ,	4.0	INITIATI	ED AT: 0841 COND.	ENDED AT:	0930	PURGED (gallons): 3.5				
TIME VOLUME PURGED (gallons) PURGED (gallons) (gallons) 1.5 1.5 0.1 2.76 7.06 25.6 555 2.90 16.8 Lt. yellow None															
0910 1.0 2.5 0.1 2.76 7.07 25.7 555 2.63 10.1 Lt. yellow None															
0901															
WELL CA	PACITY (Gallon	s Per Foot)· (1.75" = 0.02 [.]	1" = 0.04;	1.25 " = 0	.06; 2 " = 0.1	6; 3 " = 0.37;	4" = 0.65;	5" = 1.02;	6 " = 1.47;	12 " = 5.88				
TUBING IN	ISIDE DÌA. CAI	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3/16"	= 0.0014;	1/4" = 0.002	26; 5/16" = 0.	004; 3/8" = 0	0.006; 1	/ 2" = 0.010;	5/8" = 0.016				
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	P = Bladder F	•	PLING DA	Submersible Pu	mp; PP = P	eristaltic Pu	$imp; \qquad \mathbf{O} = \mathbf{C}$	ther (Specify)				
	BY (PRINT) / A Agustin / M&D I			SAMPLER(S)	SIGNATU	RE(S):		SAMPLING INITIATED A	T: 0035	SAMPLIN					
		ilidustriai Servi		Victor.	<u> J. Son</u>	, Ugusti	n 10-31-2019			ENDED A					
	WELL (feet):	4.0 ft		TUBING MATERIAL CO		DPE	Filtrati	on Equipment Ty		FILTERS	SIZE: μm				
FIELD DEC	CONTAMINATIO	ON: PUM	P Y N	replaced		`	N (replaced)	DUPLICATE	: Y	N	T				
	PLE CONTAINE					/ATION (includ		INTEND ANALYSIS A		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE				
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL DED IN FIELD (mL) FINAL	METHO	OD	CODE	(mL per minute)				
TMWB	1	Plastic	125 ml	H2SO4		N/A	N/A	AMN		APP	~200				
TMWB	1	Plastic	125 ml	NONE		N/A	N/A	S)4,NO3,N	-	APP	~200				
TMWB TMWB	1 1	Plastic Plastic	205 ml 500 ml	HNO3		N/A N/A	N/A N/A	Metal Uraniu		APP APP	~200 ~200				
TMWB	1	Plastic	250 ml	HNO3		N/A	N/A N/A	Boro		APP	~200				
	<u> </u>					1		23.0							
REMARKS	3:	<u>l</u>	I		1		ı	1			<u> </u>				
MATERIAI		AG = Amber (S = Silicone;	T = Teflon;	Clear Glass; O = Other (S	Specify)	High Density I		LDPE = Low De			= Polypropylene;				
	The above	R	APP = After (Th FPP = Reverse	e Flow Perista	Itic Pump;		; BP = Blade Method (Tubing ter 62-160. F.A	Gravity Drain);		ic Submersible ner (Specify)	Pump;				

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

62-160.800 F.A.C. Revision Date: March 1, 2014

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	oward Fe	rtilizer S	nill			ITE OCATION: A	pprox 1 mil	e South on S	SR29 an	d SR82. C	orkscrew, FL				
	TMW-Eas		P.III	SAMPLE	ID: TMV					-31-2019					
					PUR	GING DA	TA								
WELL VO	R (inches): 2.0 LUME PURGE: ti fi applicable)	1 WELL VO	TER (inches): L UME = (TOT	3/8 DEP	L SCREEN PTH: 5.0 PTH – STA	I INTERVAL feet to 10.0 f ATIC DEPTH T	STATIC TO WAT TO WATER) X	ER (feet): 5.23 WELL CAPAC	B OF		YPE PP gallons				
(only fill ou	it if applicable)	JRGE: 1 EQU	JIPWENI VOL			6 gallons/foot			0.2	gallons =	0.29 gallons				
	JMP OR TUBIN WELL (feet):	G 4.0		MP OR TUBING WELL (feet):	•	PURGIN		PURGING ENDED AT:		TOTAL VOI					
TIME	CUMUL. DEPTH COND. DISSOLVED OXYGEN TURRIDITY COLOR ODOR														
1134	1134 1.0 1.0 0.1 5.23 7.09 27.49 553 1.62 78.0 Lt. yellow None														
1144	1144 1.0 2.0 0.1 5.23 6.91 27.65 537 2.97 22.5 Lt. yellow None														
	1154 1.0 3.0 0.1 5.23 6.93 27.82 537 2.43 21.7 Lt. yellow None														
1204															
TUBING II	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal./		1" = 0.04; 0006; 3/16" BP = Bladder F	Pump; I	1/4" = 0.002 ESP = Electric	26; 5/16" = 0 Submersible Pu	0.004; 3/8" = 0	5 " = 1.02; 0.006; 1 / eristaltic Pu	6" = 1.47; 2" = 0.010; mp; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)				
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)		PLING DA		SAMPLING							
Victor San	Agustin / M&D I	ndustrial Serv	ices	Victor ~		agustin	10-31-2019) INITIATED A	T: 1206	SAMPLIN	G 1211				
PUMP OR	TUBING WELL (feet):	14.0 ft		TUBING MATERIAL CO	ODE: IF)PE	FIELD	D-FILTERED: Y ion Equipment Ty	(ne: N	FILTER S	IZE: μm				
	CONTAMINATION		IP Y (TUB		N (replaced)	DUPLICATE		N					
	PLE CONTAINE		ATION			ATION (includ		INTEND ANALYSIS A		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE				
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (mL) FINAL	METH(CODE	(mL per minute)				
TMWE	1	Plastic	125 ml	H2SO4		N/A	N/A	AMN	ı	APP	~200				
TMWE	1	Plastic	125 ml	NONE		N/A	N/A	SO4,NO3,1	NO2, F	APP	~200				
TMWE	1	Plastic	205 ml	HNO3		N/A	N/A	Metal	s	APP	~200				
TMWE	1	Plastic	500 ml	HNO3		N/A	N/A	Uraniu		APP	~200				
TMWE	1	Plastic	250 ml	HNO3		N/A	N/A	Boroi	n	APP	~200				
	REMARKS: MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;														
	G EQUIPMENT	F	APP = After (T RFPP = Rever	O = Other (S hrough) Perista se Flow Perista the informati	iltic Pump; Itic Pump;			g Gravity Drain);		c Submersible l er (Specify)	Pump;				

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

62-160.800 F.A.C. Revision Date: March 1, 2014

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	oward Fa	rtilizor S	nill			ITE	nnroy 1 mile	e South on	SP20 ar	nd SP82 C	orkscrew, FL			
	oward Fe		рш	CAMPLE	ID: TMV		pprox i iiiii			0-31-2019	OIKSCIEW, FL			
WELL NO:	110100-0063	<u> </u>		SAMPLE		GING DA	ΤΛ		DATE: I	J-3 1-20 19				
WELL		TUBING	 G	WEL		INTERVAL	STATIC [DEPTH	Р	URGE PUMP T	YPE			
	R (inches): 2.0	l l	TER (inches):	3/8 DEP		eet to 5.0 fe		, ,		R BAILER:	PP			
(only fill ou	it if applicable)		•				O WATER) X							
EQUIPME	NT VOLUME PI	JRGE: 1 EQL	= (IIPMENT VOL	5.32 fe . = PUMP VOLI	et – JME + (TU	3.78 BING CAPACI	feet) X TY X TI	0.16 UBING LENGTH	gallons/foo l) + FLOW (t = 0.25 CELL VOLUME	gallons			
(only fill ou	t if applicable)			= 0.01 gallo	ons + (0.00	6 gallons/foot	X 9.0	feet) +	0.2	gallons = (0.26 gallons			
	JMP OR TUBIN			MP OR TUBING		PURGIN		PURGING	10.10	TOTAL VO				
DEPTH IN	WELL (feet):	4.5	DEPTH IN	WELL (feet):	4.5	INITIATE	ED AT: 1015 COND.	ENDED AT:	1048	PURGED (gallons): 2.5			
TIME VOLUME PURGED (gallons) (gallons) (gallons) 1.0 1.0 0.1 3.78 7.02 27.6 725 6.34 9.70 Lt. yellow None														
1042 1.0 2.0 0.1 3.78 7.01 27.6 720 6.19 7.69 Lt. yellow None														
1048														
WELL CA	PACITY (Gallon	s Per Foot): (0.75 " = 0.02:	1 " = 0.04:	1.25" = 0.0	06: 2 " = 0.1	6; 3 " = 0.37;	4" = 0.65;	5 " = 1.02;	6" = 1.47;	12 " = 5.88			
TUBING II	NSIDE DÌA. CAI	PACITY (Gal./I	=t.): 1/8" = 0.	0006; 3/16"	= 0.0014;	1/4" = 0.002	26; 5/16" = 0.	004; 3/8" = 0	0.006; 1	/ 2" = 0.010;	5/8" = 0.016			
PURGING	EQUIPMENT C	ODE2: B	= Bailer;	BP = Bladder P		PLING DA	Submersible Pu	mp; PP = P	Peristaltic Pu	<u>ump;</u> U = C	ther (Specify)			
	BY (PRINT) / A Agustin / M&D I		ices	SAMPLER(S)	SIGNATUR	RE(S):		SAMPLING INITIATED A	ΔT· 1054	SAMPLIN				
PUMP OR		III dustriai Gerv	(TUBING	Son (<u>Iguslin 1</u>	0-31-2019	-FILTERED: Y		ENDED A	AT: 1100 HZE: μm			
DEPTH IN	WELL (feet):	4.5 ft		MATERIAL CO		DPE	Filtrati	on Equipment Ty		FILTERS	μπ			
	CONTAMINATIO				TUB		N (replaced)	DUPLICATE		N				
SAM SAMPLE	PLE CONTAINE #	R SPECIFICA MATERIAL		SAMPLE PRESERVATI		ATION (includ	ir q wet ice)	INTENE ANALYSIS A		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE			
ID CODE	CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (mL) pH	METH		CODE	(mL per minute)			
TMWW	1	Plastic	125 ml	H2SO4		N/A	N/A	AMN	+	APP	~200			
TMWW	1	Plastic Plastic	125 ml 205 ml	NONE HNO3		N/A N/A	N/A N/A	SO4,NO3, Meta		APP APP	~200 ~200			
TMWW	1	Plastic	500 ml	HNO3		N/A	N/A	Uraniı	+	APP	~200			
TMWW	1	Plastic	250 ml	HNO3		N/A	N/A	Boro	+	APP	~200			
REMARKS	B:													
	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)													
OTES: 1	The above	do not cons	titute all of t	he information	on requir	ed by Chant	er 62-160. F.A	· C						

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

62-160.800 F.A.C. Revision Date: March 1, 2014

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)