DRAFT INTERSECTION CONTROL EVALUATION

(UIHLEIN ROAD AT SR 70)

Florida Department of Transportation
District 1
SR 70
Limits of Project: from Lorraine Road to CR 675/Waterbury Road
Manatee County, Florida
Financial Management Number: 414506-2
ETDM Number: 14263
Date: JUNE 2019

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated December 14, 2016 and executed by FHWA and FDOT.

Memorandum

Date: June 24, 2019

To: David C. Turley, PE
FDOT District 1

From: Christopher Benitez, PE, PTOE
Stantec Consulting Services, Inc.

Project: $\quad 414506-2$: SR 70 between Lorraine Road and CR 675
Subject: Intersection Control Evaluation (ICE)
Uihlein Road at SR 70

Reference: Intersection Control Evaluation (ICE): Uihlein Road at SR 70

The purpose of this memorandum is to document the Florida Department of Transportation (FDOT) Intersection Control Evaluation (ICE) for the intersection of SR 70 and Uihlein Road. This ICE has been completed as part of the FDOT District 1 project: 414506-2 - SR 70 between Lorraine Road to CR 675. The project proposes to increase capacity along SR 70 by widening from a two-lane undivided to a four-lane divided facility along with traffic operational improvements at the intersections. The ICE analysis was initiated during the Project Development \& Environment (PD\&E) phase of the project due to the failing traffic operations during future conditions. According to the project Design Traffic Technical Memorandum (dated October 2018), the intersection of Uihlein Road and SR 70 will operate at Level of Service (LOS) F as a twoway stop-controlled intersection.

An FDOT ICE for the intersection of Uihlein Road and SR 70 was completed for both Stage 1 and Stage 2 for several alternative intersection configurations. Based on an interpretation of the results of the ICE analysis, the roundabout is the recommended option. The analysis included an evaluation of the traffic operations, safety, cost, multimodal accommodations, and other impacts such as environmental, utility, and right of way. The evaluation focused on the SR 70 future build conditions as a four-lane divided facility with a design speed of 55 mph . The results are provided in the Stage 2 ICE Form in Attachment A. The memorandum is organized as follows:

- Attachment A: ICE Stage 2 Form and Results
- Attachment B: Conceptual Plans
- Attachment C: Traffic Operational Analysis
- Attachment D: Safety Performance for Intersection Control Evaluation (SPICE)
- Attachment E: Cost Estimates
- Attachment F: Delay Calculations
- Attachment G: Benefit/Cost Summary
- Attachment H: ICE Stage 1 Form, Capacity Analysis for Planning of Junctions (CAP-X), and Stage 1 SPICE

ATTACHMENT A FDOT ICE Stage 2 Form and Results

Intersection Control Evaluation (ICE) Form

Stage 2: Intial Control Strategy Assessment

To fulfill the requirements of Stage 2 (Intersection Control Strategy) of FDOT's ICE procedures, complete the following form and append all supporting documentation. Completed forms can be submitted to the District Traffic Operations Engineer (DTOE) and District Design Engineer (DDE) for the project's approval.

Project Name	SR 70 from Lorraine Rd to CR 675		FDOT Project \#	414506-2-22-01		Date	06/25/19
Submitted By	Nicole Harris, PE		ompany	Stantec	Email	nicole.	stantec.com
List all viable intersection control strategies identified in Stage 1 (Screening):							
Signalized Control		Roundabout			Displaced Left-Turn		
Continuous Green Tee							

FDOT ICE: Stage 2

Safety Performance							
Enter the most recent five (5) years of crash data from the CAR System.				Most recent year of crash data available			2018
Crash Type		2014	2015	2016	2017	2018	Total
Combined	Total						
	Fatal/Injury						
	PDO						
Single-Vehicle	Total	0	1	1	0	2	4
	Fatal/Injury	0	0	0	0	1	1
	PDO	0	1	1	0	1	3
Multi-Vehicle	Total	0	0	1	1	2	4
	Fatal/Injury	0	0	0	1	2	3
	PDO	0	0	1	0	0	1
Vehicle-Pedestrian	Fatal/Injury	0	0	0	0	0	0
Vehicle-Bicycle	Fatal/Injury	0	0	0	0	0	0
Total	All	0	1	2	1	4	8

Apply the FDOT SPICE Tool to model anticipated safety performance of each control strategy. For intersection types not accommodated in the tool, manually apply crash modification factors detailed in the ICE procedures document or qualitatively describe anticipated safety impacts.

Control Strategy	Onticipated Impact on Safety Performance	Opening Year		Design Year	
	Predicted Total Crashes	Predicted Fatal+Injury Crashes	Predicted Total Crashes	Predicted Fatal+Injury Crashes	
Signalized Control	This option is comparable to the Displaced Left-Turn and Continuous Green Tee options.	5.18	1.84	12.50	3.90
Roundabout	This option has the lowest Predicted Fatal+Injury crashes during both Opening and Design years	7.00	1.23	14.82	2.98
Displaced Left-Turn	This option is comparable to the Signalized and Continuous Green Tee options.	4.56	1.62	11.00	3.43
Continuous Green Tee	This option is comparable to the Signalized and Displaced Left-Turn options.	4.97	1.56	12.00	3.31

Costs and Benefit/Cost Ratios						
Remaining cognizant of the current level of detail of each control strategy's conceptual design, provide a cost estimate for each. You may want to include costs for preliminary engineering, required right-of-way acquisitions, construction, and a contingency. Apply the FDOT ICE Tool to determine the delay benefit-cost ratio (B/C), safety B/C, overall B/C, and net-present value for each control stratetgy.						
Control Strategy	ROW Costs (\$)	Construction Costs (\$)	FDOT ICE Tool Outputs			
			Delay B/C	Safety B/C	Overall B/C	Net Present Value
Signalized Control	\$0	\$2,090,000	Base	Base	Base	Base
Roundabout	\$30,000	\$1,750,000	Preferred	Preferred	Preferred	\$11,947,931
Displaced Left-Turn	\$1,820,000	\$2,390,000	1.82	1.69	3.50	\$2,012,798
Continuous Green Tee	\$2,150,000	\$2,150,000	50.79	26.98	77.77	\$4,606,421

FDOT ICE: Stage 2

Environmental, Utility, and Right-of-Way Impacts
Summarize any issues related to environmental, utility, or right-of-way (including relocation) impacts specific to each control strategy. Be sure to consider the NEPA requirements for each control type.

Signalized Control	Improvements are within right-of-way and no new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.
Roundabout	Minor right of way needs. No new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.
Displaced Left-Turn	Right of way acquisition may be needed. There is also potential impacts to the overhead transmission lines on the north side. A driveway/connection will also be impacted.
Continuous Green Tee	Improvements are within right-of-way and no new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.

Public Input/Feedback (if appropriate)
Summarize any agency or public input regarding the control strategies:
None performed to date.

FDOT ICE: Stage 2

Control Strategy Evaluation
Provide a brief justification as to why each of the following is either viable or not viable. If a single control strategy is recommended, select it as the only strategy to be advanced.

Control Strategy	Strategy to be Advanced?	
Signalized Control	No	This option was analyzed as the base intersection control. Comparing the B/C, NPV, and traffic operations to other options, this is not the recommended strategy.
Roundabout	Yes	1) Preferred option based on B/C and NPV compared to base; 2) less severe crashes ; 3) traffic operations at LOS C or better; 4) no right of way impacts; and, 5) enhances the livable communities characteristic by lowering vehicle speeds.
Displaced Left-Turn	No	This option has the highest costs and potential impacts to utilities. Although, it does have a B/C greater than 1 and a positive NPV which indicates that it is a better than the base option (signalized).
Continuous Green Tee	No	This option is the second best option from a B/C and NPV perspective.
	No	
	No	

Resolution			
To be filled out by FDOT District Traffic Operations Engineer and District Design Engineer			
Project Determination			\%
Comments			
DTOE Name	Signature		Date
DDE Name	Signature		Date

ATTACHMENT B
 Conceptual Plans

SR 70 and Uihlein Road
Signalized Intersection

SR 70 and Uihlein Road
 Roundabout

Key Features:

- New roundabout with an 2-lanes for both Eastbound and Westbound approachesalong SR 70
- 2-lane for the approach along Uihlein Road including a right-tum bypass la ne
- Inscribed Circle Dia meter (ICD) of a pproximately 190 feet
- Minor right-of-way acquisition
- No impacts anticipated to the overhead transmission lines on noth side of roadway

SR 70 and Uihlein Road Partial Displaced Left-Tum

SR 70 and Uihlein Road Continuous Green-Tee

ATTACHMENT C

Traffic Operational Analysis

	L	d	\cdots	,	a	k	4	
Movement	SBL	SBR	SEL	SET	NWU	NWT	NWR	
Lane Configurations	${ }^{1}$	「'	${ }^{7}$	44	\dagger	44	F゙	
Traffic Volume (veh/h)	114	411	698	1256	0	781	120	
Future Volume (veh/h)	114	411	698	1256	0	781	120	
Number	7	14	1	6		2	12	
Initial Q (Qb), veh	0	0	0	0		0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00				1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00		1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1776	1776		1776	1776	
Adj Flow Rate, veh/h	120	433	735	1322		822	126	
Adj No. of Lanes	1	1	1	2		2	1	
Peak Hour Factor	0.95	0.95	0.95	0.95		0.95	0.95	
Percent Heavy Veh, \%	2	2	7	7		7	7	
Cap, veh/h	353	843	662	2253		904	704	
Arrive On Green	0.20	0.20	0.33	0.67		0.27	0.27	
Sat Flow, veh/h	1774	1583	1691	3463		3463	1509	
Grp Volume(v), veh/h	120	433	735	1322		822	126	
Grp Sat Flow(s),veh/h/ln	1774	1583	1691	1687		1687	1509	
Q Serve(g_s), s	5.2	15.9	30.0	19.3		21.2	4.4	
Cycle Q Clear(g_c), s	5.2	15.9	30.0	19.3		21.2	4.4	
Prop In Lane	1.00	1.00	1.00				1.00	
Lane Grp Cap(c), veh/h	353	843	662	2253		904	704	
V/C Ratio(X)	0.34	0.51	1.11	0.59		0.91	0.18	
Avail Cap(c_a), veh/h	355	844	662	2253		904	704	
HCM Platoon Ratio	1.00	1.00	1.00	1.00		1.00	1.00	
Upstream Filter(l)	1.00	1.00	1.00	1.00		1.00	1.00	
Uniform Delay (d), s/veh	31.0	13.6	22.7	8.2		31.9	14.0	
Incr Delay (d2), s/veh	0.6	0.5	69.4	1.1		14.7	0.6	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0		0.0	0.0	
\%ile BackOfQ(50\%),veh/ln	2.6	15.9	29.1	9.2		11.7	2.6	
LnGrp Delay(d),s/veh	31.6	14.1	92.1	9.3		46.6	14.5	
LnGrp LOS	C	B	F	A		D	B	
Approach Vol, veh/h	553			2057		948		
Approach Delay, s/veh	17.9			38.9		42.3		
Approach LOS	B			D		D		
Timer	1	2	3	4	5	6	7	8
Assigned Phs	1	2		4		6		
Phs Duration ($G+Y+R c$), s	36.0	30.1		23.9		66.1		
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	6.0	6.0		6.0		6.0		
Max Green Setting (Gmax), s	30.0	24.0		18.0		60.0		
Max Q Clear Time (g_c+11), s	32.0	23.2		17.9		21.3		
Green Ext Time (p_c), s	0.0	0.5		0.0		11.9		
Intersection Summary								
HCM 2010 Ctrl Delay			36.5					
HCM 2010 LOS			D					
Notes								

Clearance Time (s)

Vehicle Extension (s)				
Lane Grp Cap (vph)	1654	795	3463	2205
V/s Ratio Prot	0.13	00.04	0.16	$c 0.26$
V/s Ratio Perm				
V/c Ratio	0.13	0.18	0.16	0.41
Uniform Delay, d1	0.0	28.9	0.0	8.5
Progression Factor	1.00	1.00	1.00	0.23
Incremental Delay, d2	0.2	0.1	0.1	0.1
Delay (s)	0.2	29.0	0.1	2.1
Level of Service		A	C	A
Approach Delay (s)	0.2			A
Approach LOS	A			A
(s)		A		

Intersection Summary			
HCM 2000 Control Delay	3.3	HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio	0.42		24.0
Actuated Cycle Length (s)	95.0	Sum of lost time (s)	A
Intersection Capacity Utilization	37.5%	ICU Level of Service	
Analysis Period (min)	15		
! Phase conflict between lane groups.			

c Critical Lane Group

c Critical Lane Group

Clearance Time (s)

Vehicle Extension (s)				
Lane Grp Cap (vph)	330	2092	2092	281
v/s Ratio Prot	c 0.02			
v/s Ratio Perm				
v/c Ratio	0.11	0.42	0.28	0.03
Uniform Delay, d1	30.9	7.1	6.3	30.4
Progression Factor	0.15	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.1	0.1	0.0
Delay (s)	4.9	7.3	6.4	30.5
Level of Service	A	A	A	C
Approach Delay (s)	4.9	7.3	7.9	
Approach LOS	A	A	A	

Intersection Summary			
HCM 2000 Control Delay	7.5	HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio	0.41		24.0
Actuated Cycle Length (s)	95.0	Sum of lost time (s)	A
Intersection Capacity Utilization	39.0%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

		\pm	\cdots	+	k	4	
Movement	SBL	SBR	SEL	SET	NWT	NWR	
Lane Configurations		F'	${ }^{7} 1$	中4	44		
Traffic Volume (vph)	0	128	217	830	549	0	
Future Volume (vph)	0	128	217	830	549	0	
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	
Total Lost time (s)		4.0	6.0	4.0	6.0		
Lane Util. Factor		1.00	0.97	0.95	0.95		
Frt		0.86	1.00	1.00	1.00		
Flt Protected		1.00	0.95	1.00	1.00		
Satd. Flow (prot)		1654	3359	3463	3463		
Flt Permitted		1.00	0.95	1.00	1.00		
Satd. Flow (perm)		1654	3359	3463	3463		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	0	135	228	874	578	0	
RTOR Reduction (vph)	0	0	0	0	0	0	
Lane Group Flow (vph)	0	135	228	874	578	0	
Heavy Vehicles (\%)	2\%	2\%	7\%	7\%	7\%	7\%	
Turn Type		custom	Prot	NA	NA		
Protected Phases		Free!	1	Free	$2!$		
Permitted Phases							
Actuated Green, G (s)		95.0	25.2	95.0	32.6		
Effective Green, g (s)		95.0	25.2	95.0	32.6		
Actuated g/C Ratio		1.00	0.27	1.00	0.34		
Clearance Time (s)			6.0		6.0		
Vehicle Extension (s)			3.0		3.0		
Lane Grp Cap (vph)		1654	891	3463	1188		
v/s Ratio Prot		0.08	0.07	0.25	c0.17		
v/s Ratio Perm							
v/c Ratio		0.08	0.26	0.25	0.49		
Uniform Delay, d1		0.0	27.5	0.0	24.6		
Progression Factor		1.00	1.00	1.00	0.71		
Incremental Delay, d2		0.1	0.2	0.2	1.4		
Delay (s)		0.1	27.7	0.2	18.9		
Level of Service		A	C	A	B		
Approach Delay (s)	0.1			5.9	18.9		
Approach LOS	A			A	B		
Intersection Summary							
HCM 2000 Control Delay			9.6		HCM 2000	evel of Service	A
HCM 2000 Volume to Capacity ratio			0.42				
Actuated Cycle Length (s)			95.0		Sum of lost	ime (s)	24.0
Intersection Capacity Utilization			30.8\%		CU Level o	Service	A
Analysis Period (min)			15				
! Phase conflict between lane groups.							
c Critical Lane Group							

c Critical Lane Group

Clearance Time (s)

Vehicle Extension (s)				
Lane Grp Cap (vph)	473	1820	1820	403
V/s Ratio Prot	c0.09	0.29	$c 0.42$	0.04
v/s Ratio Perm				
V/c Ratio	0.32	0.49	0.72	0.14
Uniform Delay, d1	26.4	11.5	14.1	25.0
Progression Factor	0.16	1.00	1.00	1.00
Incremental Delay, d2	0.4	0.2	1.4	0.2
Delay (s)	4.7	B	15.5	25.2
Level of Service	A	B	C	
Approach Delay (s)	4.7	11.7	16.5	
Approach LOS	A	B	B	

Intersection Summary			
HCM 2000 Control Delay	14.1	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.68		24.0
Actuated Cycle Length (s)	95.0	Sum of lost time (s)	B
Intersection Capacity Utilization	55.7%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

Clearance Time (s)

Vehicle Extension (s)				
Lane Grp Cap (vph)	595	1587	1587	507
v/s Ratio Prot	c0.07	c0.42	0.26	0.03
v/s Ratio Perm				
V/c Ratio	0.20	0.83	0.52	0.09
Uniform Delay, d1	20.7	19.9	15.5	19.9
Progression Factor	0.18	1.00	1.00	1.00
Incremental Delay, d2	0.2	3.7	0.3	0.1
Delay (s)	3.9	23.6	15.8	19.9
Level of Service	A	C	B	B
Approach Delay (s)	3.9	23.6	16.4	
Approach LOS	A	C	B	

Intersection Summary			
HCM 2000 Control Delay	19.7	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.67		24.0
Actuated Cycle Length (s)	95.0	Sum of lost time (s)	A
Intersection Capacity Utilization	54.4%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

c Critical Lane Group

	\downarrow	*	*	\downarrow	\uparrow		
Movement	SBT	SBR2	NWT	NWR	NEL		
Lane Configurations	\uparrow	7	$\uparrow \uparrow$	7	7\%		
Traffic Volume (vph)	44	206	865	43	133		
Future Volume (vph)	44	206	865	43	133		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97		
Fit	1.00	0.85	1.00	0.85	1.00		
Flt Protected	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (prot)	1863	1583	3374	1509	3273		
Flt Permitted	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (perm)	1863	1583	3374	1509	3273		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	46	217	911	45	140		
RTOR Reduction (vph)	0	35	0	11	0		
Lane Group Flow (vph)	46	182	911	34	140		
Heavy Vehicles (\%)	2\%	2\%	7\%	7\%	7\%		
Turn Type	NA	custom	NA	custom	Prot		
Protected Phases	4	41	2	24	1		
Permitted Phases							
Actuated Green, G (s)	13.1	28.3	49.7	68.8	9.2		
Effective Green, g (s)	13.1	28.3	49.7	68.8	9.2		
Actuated g/C Ratio	0.15	0.31	0.55	0.76	0.10		
Clearance Time (s)	6.0		6.0		6.0		
Vehicle Extension (s)	3.0		3.0		3.0		
Lane Grp Cap (vph)	271	497	1863	1153	334		
v/s Ratio Prot	0.02	c0.11	c0.27	0.02	0.04		
v/s Ratio Perm							
v/c Ratio	0.17	0.37	0.49	0.03	0.42		
Uniform Delay, d1	33.7	23.9	12.4	2.6	37.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.3	0.5	0.9	0.0	0.9		
Delay (s)	34.0	24.4	13.3	2.6	38.7		
Level of Service	C	C	B	A	D		
Approach Delay (s)	26.0		12.8		38.7		
Approach LOS	C		B		D		
Intersection Summary							
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			18.0		HCM 2000 Level of Service	B	
			0.48				
Actuated Cycle Length (s)			90.0		Sum of lost time (s)	18.0	
Intersection Capacity Utilization			47.2\%		ICU Level of Service	A	
Analysis Period (min)			15				
C Critical Lane Group							

	\downarrow	*	*	\downarrow	\uparrow		
Movement	SBT	SBR2	NWT	NWR	NEL		
Lane Configurations	\uparrow	7	$\uparrow \uparrow$	7	7\%		
Traffic Volume (vph)	35	128	549	37	217		
Future Volume (vph)	35	128	549	37	217		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		
Lane Utill. Factor	1.00	1.00	0.95	1.00	0.97		
Frt	1.00	0.85	1.00	0.85	1.00		
Flt Protected	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (prot)	1863	1583	3374	1509	3273		
Flt Permitted	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (perm)	1863	1583	3374	1509	3273		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	37	135	578	39	228		
RTOR Reduction (vph)	0	86		10	0		
Lane Group Flow (vph)	37	49	578	29	228		
Heavy Vehicles (\%)	2\%	2\%	7\%	7\%	7\%		
Turn Type	NA	custom	NA	custom	Prot		
Protected Phases	4	41	2	24	1		
Permitted Phases							
Actuated Green, G (s)	7.5	25.1	52.9	66.4	11.6		
Effective Green, g (s)	7.5	25.1	52.9	66.4	11.6		
Actuated g/C Ratio	0.08	0.28	0.59	0.74	0.13		
Clearance Time (s)	6.0		6.0		6.0		
Vehicle Extension (s)	3.0		3.0		3.0		
Lane Grp Cap (vph)	155	441	1983	1113	421		
v/s Ratio Prot	c0.02	0.03	c0.17	0.02	c0.07		
v/s Ratio Perm							
v/c Ratio	0.24	0.11	0.29	0.03	0.54		
Uniform Delay, d1	38.6	24.2	9.2	3.2	36.7		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.8	0.1	0.4	0.0	1.4		
Delay (s)	39.4	24.3	9.6	3.2	38.1		
Level of Service	D	C	A	A	D		
Approach Delay (s)	27.5		9.2		38.1		
Approach LOS	C		A		D		
Intersection Summary							
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			18.8		HCM 2000 Level of Service	B	
			0.33				
Actuated Cycle Length (s)			90.0		Sum of lost time (s)	18.0	
Intersection Capacity Utilization			40.5\%		ICU Level of Service	A	
Analysis Period (min)			15				
C Critical Lane Group							

	\downarrow	*	k	\downarrow	\uparrow		
Movement	SBT	SBR2	NWT	NWR	NEL		
Lane Configurations	\uparrow	7	$\uparrow \uparrow$	7	7\%		
Traffic Volume (vph)	142	663	1242	137	430		
Future Volume (vph)	142	663	1242	137	430		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97		
Fit	1.00	0.85	1.00	0.85	1.00		
Flt Protected	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (prot)	1863	1583	3374	1509	3273		
Flt Permitted	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (perm)	1863	1583	3374	1509	3273		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	149	698	1307	144	453		
RTOR Reduction (vph)	0	19	0	17	0		
Lane Group Flow (vph)	149	679	1307	127	453		
Heavy Vehicles (\%)	2\%	2\%	7\%	7\%	7\%		
Turn Type	NA	custom	NA	custom	Prot		
Protected Phases	4	41	2	24	1		
Permitted Phases							
Actuated Green, G (s)	18.0	41.8	36.2	60.2	17.8		
Effective Green, g (s)	18.0	41.8	36.2	60.2	17.8		
Actuated g/C Ratio	0.20	0.46	0.40	0.67	0.20		
Clearance Time (s)	6.0		6.0		6.0		
Vehicle Extension (s)	3.0		3.0		3.0		
Lane Grp Cap (vph)	372	735	1357	1009	647		
v/s Ratio Prot	0.08	c0.43	c0.39	0.08	0.14		
v/s Ratio Perm							
v/c Ratio	0.40	0.92	0.96	0.13	0.70		
Uniform Delay, d1	31.3	22.6	26.2	5.4	33.6		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.7	17.2	17.1	0.1	3.4		
Delay (s)	32.0	39.8	43.3	5.4	37.0		
Level of Service	C	D	D	A	D		
Approach Delay (s)	38.4		39.6		37.0		
Approach LOS	D		D		D		
Intersection Summary							
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			38.8		HCM 2000 Level of Service	D	
			1.02				
HCM 2000 Volume to Capacity ratio			90.0		Sum of lost time (s)	18.0	
Intersection Capacity Utilization			85.4\%		ICU Level of Service	E	
Analysis Period (min)			15				
C Critical Lane Group							

	\downarrow	*	k	\downarrow	\uparrow		
Movement	SBT	SBR2	NWT	NWR	NEL		
Lane Configurations	\uparrow	7	$\uparrow \uparrow$	7	71		
Traffic Volume (vph)	114	411	781	120	698		
Future Volume (vph)	114	411	781	120	698		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97		
Fit	1.00	0.85	1.00	0.85	1.00		
Flt Protected	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (prot)	1863	1583	3374	1509	3273		
Flt Permitted	1.00	1.00	1.00	1.00	0.95		
Satd. Flow (perm)	1863	1583	3374	1509	3273		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	120	433	822	126	735		
RTOR Reduction (vph)	0	17	0	14	0		
Lane Group Flow (vph)	120	416	822	112	735		
Heavy Vehicles (\%)	2\%	2\%	7\%	7\%	7\%		
Turn Type	NA	custom	NA	custom	Prot		
Protected Phases	4	41	2	24	1		
Permitted Phases							
Actuated Green, G (s)	17.3	47.3	30.7	54.0	24.0		
Effective Green, g (s)	17.3	47.3	30.7	54.0	24.0		
Actuated g/C Ratio	0.19	0.53	0.34	0.60	0.27		
Clearance Time (s)	6.0		6.0		6.0		
Vehicle Extension (s)	3.0		3.0		3.0		
Lane Grp Cap (vph)	358	831	1150	905	872		
v/s Ratio Prot	0.06	c0.26	c0.24	0.07	c0.22		
v/s Ratio Perm							
v/c Ratio	0.34	0.50	0.71	0.12	0.84		
Uniform Delay, d1	31.4	13.7	25.8	7.8	31.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.6	0.5	3.8	0.1	7.5		
Delay (s)	31.9	14.2	29.6	7.8	38.7		
Level of Service	C	B	C	A	D		
Approach Delay (s)	18.1		26.7		38.7		
Approach LOS	B		C		D		
Intersection Summary							
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			28.5		HCM 2000 Level of Service	C	
			0.73				
Actuated Cycle Length (s)			90.0		Sum of lost time (s)	18.0	
Intersection Capacity Utilization			62.5\%		CU Level of Service	B	
Analysis Period (min)			15				
C Critical Lane Group							

SR 70 @ UIHLEIN RD ROUNDABOUT ANALYSIS

2025 OPENING YEAR (HCM 6th Edition)								
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)	
	AM	PM	AM	PM	AM	PM	AM	PM
Overall	5.8	6.2	A	A				
SR 70 EB	5.3	7.1	A	A	0.28	0.43	35	65
SR 70 WB	7.3	6.2	A	A	0.41	0.29	60	35
Uihlein Rd SB	1.2	1.0	A	A	0.13	0.08	25	25

2025 OPENING YEAR (Sidra Standard)								
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)	
	AM	PM	AM	PM	AM	PM	AM	PM
Overall	4.6	4.8	A	A				
SR 70 EB	4.7	4.8	A	A	0.25	0.38	45	75
SR 70 WB	4.4	4.7	A	A	0.36	0.25	65	40
Uihlein Rd SB	5.0	5.2	A	A	0.13	0.08	25	25

2045 DESIGN YEAR (HCM 6th Edition)										
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)			
	AM	PM	AM	PM	AM	PM	AM	PM		
	$\mathbf{1 5 . 2}$	$\mathbf{1 9 . 6}$	C	C						
SR 70 EB	10.3	23.0	B	C	0.58	0.87	105	585		
SR 70 WB	27.1	22.7	D	C	0.85	0.73	435	180		
Uihlein Rd SB	2.7	1.7	A	A	0.43	0.26	35	25		

2045 DESIGN YEAR (Sidra Standard)											
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)				
	AM	PM	AM	PM	AM	PM	AM	PM			
Overall	7.9	$\mathbf{8 . 9}$	A	A							
SR 70 EB	6.5	7.1	A	A	0.52	0.76	125	280			
SR 70 WB	10.6	14.8	B	B	0.72	0.67	255	230			
Uihlein Rd SB	5.5	5.4	A	A	0.43	0.26	40	25			

SITE LAYOUT

- Site: [SR 70 \& Uihlein Rd]

Site Category: (None)
Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Created: Tuesday, June 11, 2019 8:51:38 AM
Project: C:IProjects\SR 70ISR70_uihlein_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]

2025 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	911	7.0	0.413	7.3	LOS A	2.2	58.2	0.38	0.24	0.38	34.5
12	R2	45	7.0	0.413	7.3	LOS A	2.2	58.2	0.38	0.24	0.38	33.2
Appro		956	7.0	0.413	7.3	LOS A	2.2	58.2	0.38	0.24	0.38	34.4
North: Uihlein Rd												
3	L2	46	2.0	0.076	6.8	LOS A	0.3	6.4	0.59	0.59	0.59	32.1
18	R2	217	2.0	0.132	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	37.7
Approach		263	2.0	0.132	1.2	LOS A	0.3	6.4	0.10	0.10	0.10	36.5
West: SR 70												
1	L2	140	7.0	0.279	5.3	LOS A	1.3	35.3	0.17	0.07	0.17	34.4
	T1	571	7.0	0.279	5.3	LOS A	1.3	35.3	0.17	0.07	0.17	35.2
Approach		711	7.0	0.279	5.3	LOS A	1.3	35.3	0.17	0.07	0.17	35.0
All Vehicles		1929	6.3	0.413	5.8	LOS A	2.2	58.2	0.26	0.16	0.26	34.9

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:58:37 AM
Project: C:IProjectsISR 70ISR70_uihlein_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]

2025 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	911	7.0	0.356	4.4	LOS A	2.4	62.8	0.39	0.43	0.39	37.2
12	R2	45	7.0	0.356	4.6	LOS A	2.4	62.8	0.37	0.42	0.37	35.8
Appr		956	7.0	0.356	4.4	LOS A	2.4	62.8	0.39	0.43	0.39	37.1
North: Uihlein Rd												
3	L2	46	2.0	0.063	12.8	LOS B	0.2	6.3	0.58	0.80	0.58	33.9
18	R2	217	2.0	0.132	3.4	LOS A	0.0	0.0	0.00	0.41	0.00	37.7
Approach		263	2.0	0.132	5.0	LOS A	0.2	6.3	0.10	0.48	0.10	36.9
West: SR 70												
1	L2	140	7.0	0.245	10.3	LOS B	1.6	42.9	0.22	0.49	0.22	36.6
	T1	571	7.0	0.245	3.4	LOS A	1.7	43.9	0.21	0.38	0.21	37.6
Approach		711	7.0	0.245	4.7	LOS A	1.7	43.9	0.21	0.40	0.21	37.4
All Vehicles		1929	6.3	0.356	4.6	LOS A	2.4	62.8	0.28	0.43	0.28	37.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:13:13 AM
Project: C:IProjectsISR 70ISR70_uihlein_2025_2045_am_pm_sidra.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]
2025 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	578	7.0	0.290	6.2	LOS A	1.3	34.3	0.42	0.30	0.42	35.1
12	R2	39	7.0	0.290	6.2	LOS A	1.3	34.3	0.42	0.30	0.42	33.7
Appr		617	7.0	0.290	6.2	LOS A	1.3	34.3	0.42	0.30	0.42	35.0
North: Uihlein Rd												
3	L2	37	2.0	0.045	4.8	LOS A	0.2	3.9	0.49	0.41	0.49	33.0
18	R2	135	2.0	0.082	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	37.7
Approach		172	2.0	0.082	1.0	LOS A	0.2	3.9	0.11	0.09	0.11	36.5
West: SR 70												
18	L2	228	7.0	0.430	7.1	LOS A	2.5	66.5	0.18	0.07	0.18	33.5
	T1	874	7.0	0.430	7.1	LOS A	2.5	66.5	0.18	0.07	0.18	34.2
Approach		1102	7.0	0.430	7.1	LOS A	2.5	66.5	0.18	0.07	0.18	34.1
All Vehicles		1891	6.5	0.430	6.2	LOS A	2.5	66.5	0.25	0.15	0.25	34.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:59:19 AM
Project: C:IProjects\SR 70ISR70_uihlein_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]
2025 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	578	7.0	0.246	4.7	LOS A	1.5	39.2	0.44	0.47	0.44	37.0
12	R2	39	7.0	0.246	4.9	LOS A	1.5	39.2	0.43	0.45	0.43	35.6
Appro		617	7.0	0.246	4.7	LOS A	1.5	39.2	0.44	0.46	0.44	36.9
North: Uihlein Rd												
3	L2	37	2.0	0.043	11.9	LOS B	0.2	4.2	0.50	0.72	0.50	34.1
18	R2	135	2.0	0.082	3.4	LOS A	0.0	0.0	0.00	0.41	0.00	37.7
Approach		172	2.0	0.082	5.2	LOS A	0.2	4.2	0.11	0.48	0.11	36.8
West: SR 70												
1	L2	228	7.0	0.376	10.3	LOS B	2.9	75.7	0.22	0.49	0.22	36.5
	T1	874	7.0	0.376	3.4	LOS A	2.9	76.6	0.21	0.38	0.21	37.5
Approach		1102	7.0	0.376	4.8	LOS A	2.9	76.6	0.21	0.40	0.21	37.3
All Vehicles		1891	6.5	0.376	4.8	LOS A	2.9	76.6	0.28	0.43	0.28	37.1

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:18:01 AM
Project: C:IProjectsISR 70ISR70_uihlein_2025_2045_am_pm_sidra.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]
2045 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	1307	7.0	0.850	27.1	LOS D	16.5	436.7	0.93	1.52	2.45	26.5
12	R2	144	7.0	0.850	27.1	LOS D	16.5	436.7	0.93	1.52	2.45	25.7
Appr		1452	7.0	0.850	27.1	LOS D	16.5	436.7	0.93	1.52	2.45	26.5
North: Uihlein Rd												
3	L2	149	2.0	0.353	14.8	LOS B	1.3	34.3	0.78	0.84	1.01	29.0
18	R2	698	2.0	0.425	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	37.6
Approach		847	2.0	0.425	2.7	LOS A	1.3	34.3	0.14	0.15	0.18	35.6
West: SR 70 lo												
1	L2	453	7.0	0.581	10.3	LOS B	3.9	103.2	0.48	0.31	0.48	31.3
$8 \quad$ T1 891			7.0	0.581	10.3	LOS B	3.9	103.2	0.48	0.31	0.48	32.6
Approach		1343	7.0	0.581	10.3	LOS B	3.9	103.2	0.48	0.31	0.48	32.2
All Vehicles		3642	5.8	0.850	15.2	LOS C	16.5	436.7	0.58	0.76	1.19	30.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:58:56 AM
Project: C:IProjectsISR 70ISR70_uihlein_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]
2045 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	1307	7.0	0.723	10.6	LOS B	9.7	255.6	0.92	0.96	1.19	34.6
12	R2	144	7.0	0.723	10.0	LOS B	9.7	255.6	0.91	0.92	1.15	33.7
Appr		1452	7.0	0.723	10.6	LOS B	9.7	255.6	0.92	0.96	1.19	34.5
North: Uihlein Rd												
3	L2	149	2.0	0.324	15.0	LOS B	1.7	42.0	0.82	0.95	0.85	32.9
18	R2	698	2.0	0.425	3.4	LOS A	0.0	0.0	0.00	0.41	0.00	37.6
Approach		847	2.0	0.425	5.5	LOS A	1.7	42.0	0.14	0.51	0.15	36.6
West: SR 70 lol												
1	L2	453	7.0	0.515	11.2	LOS B	4.6	121.4	0.55	0.61	0.55	34.7
$8 \quad$ T1 891			7.0	0.515	4.1	LOS A	4.8	126.0	0.53	0.46	0.53	36.4
Approach		1343	7.0	0.515	6.5	LOS A	4.8	126.0	0.53	0.51	0.53	35.8
All Vehicles		3642	5.8	0.723	7.9	LOS A	9.7	255.6	0.60	0.69	0.71	35.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:15:01 AM
Project: C:IProjectsISR 70ISR70_uihlein_2025_2045_am_pm_sidra.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]
2045 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	822	7.0	0.731	22.7	LOS C	6.7	178.1	0.84	1.16	1.83	28.0
12	R2	126	7.0	0.731	22.7	LOS C	6.7	178.1	0.84	1.16	1.83	27.1
Appro		948	7.0	0.731	22.7	LOS C	6.7	178.1	0.84	1.16	1.83	27.8
North: Uihlein Rd												
3	L2	120	2.0	0.182	7.6	LOS A	0.6	16.4	0.61	0.61	0.61	31.8
18	R2	433	2.0	0.264	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	37.6
Approach		553	2.0	0.264	1.7	LOS A	0.6	16.4	0.13	0.13	0.13	36.1
West: SR 70												
1	L2	735	7.0	0.866	23.0	LOS C	22.2	585.2	0.81	0.67	1.10	26.7
	T1	1322	7.0	0.866	23.0	LOS C	22.2	585.2	0.81	0.69	1.10	27.7
Approach		2057	7.0	0.866	23.0	LOS C	22.2	585.2	0.81	0.68	1.10	27.3
All Vehicles		3558	6.2	0.866	19.6	LOS C	22.2	585.2	0.71	0.73	1.15	28.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:59:31 AM
Project: C:IProjects\SR 70ISR70_uihlein_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Uihlein Rd]
2045 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
East: SR 70												
4	T1	822	7.0	0.673	14.9	LOS B	8.6	227.6	1.00	1.12	1.38	32.5
12	R2	126	7.0	0.673	13.9	LOS B	8.6	227.6	1.00	1.09	1.36	31.9
Appr		948	7.0	0.673	14.8	LOS B	8.6	227.6	1.00	1.12	1.38	32.4
North: Uihlein Rd												
3	L2	120	2.0	0.184	12.8	LOS B	0.9	22.1	0.68	0.85	0.68	33.6
18	R2	433	2.0	0.264	3.4	LOS A	0.0	0.0	0.00	0.41	0.00	37.6
Approach		553	2.0	0.264	5.4	LOS A	0.9	22.1	0.15	0.51	0.15	36.6
West: SR 70												
1	L2	7351322	7.0	0.763	11.6	LOS B	10.5	276.4	0.74	0.60	0.74	34.1
8	T1		7.0	0.763	4.5	LOS A	10.7	281.5	0.69	0.49	0.69	35.9
Approach		2057	7.0	0.763	7.1	LOS A	10.7	281.5	0.71	0.53	0.71	35.2
All Vehicles		3558	6.2	0.763	8.9	LOS A	10.7	281.5	0.70	0.68	0.80	34.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Tuesday, June 11, 2019 7:19:26 AM
Project: C:IProjectsISR 70ISR70_uihlein_2025_2045_am_pm_sidra.sip8

ATTACHMENT D Safety Performance for Intersection Control Evaluation (SPICE)

Federal Highway Administration (FHWA)Safety Performance for Intersection Control Evaluation Tool							
Results							
Summary of crash prediction results for each alternative							
Project Information							
Project Name:	SR 70 from Lorraine Rd to CR 675			Intersection Type		At-Grade Intersections	
Intersection:	SR 70 @ Uihlein			Opening Year			
Agency:	D1			Design Year			
Project Reference:	414506-2-22-01			Facility Type		On Urban	urban Arterial
City:	Unincorporated Manatee County			Number of Legs			
State:	FL			1-Way/2-Way		2-way	ting 2-way
Date:	6/24/2019			\# of Major Street Lanes (both directions)		5 or fewer	
Analyst:	Nicole Harris, PE			Major Street Approach Speed		Less than 55 mph	
Crash Prediction Summary							
Control Strategy	Crash Type	Opening Year	Design Year	Total Project Life Cycle	Rank	AADT Within Prediction Range?	Source of Prediction
Traffic Signal	Fatal \& Injury	$\begin{aligned} & \hline 5.18 \\ & 1.84 \\ & \hline \end{aligned}$	$\begin{gathered} 12.50 \\ 3.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 184.09 \\ 60.20 \\ \hline \end{gathered}$	4	Yes	Calibrated SPF
2-Iane Roundabout	Fatal \& Injury	$\begin{aligned} & 7.00 \\ & 1.23 \\ & \hline \end{aligned}$	$\begin{gathered} 14.82 \\ 2.98 \\ \hline \end{gathered}$	$\begin{gathered} 228.09 \\ 43.57 \\ \hline \end{gathered}$	1	N/A	Uncalibrated SPF
Displaced Left Turn (DLT)	Fatal \& Injury	$\begin{aligned} & \hline 4.56 \\ & 1.62 \\ & \hline \end{aligned}$	$\begin{gathered} 11.00 \\ 3.43 \\ \hline \end{gathered}$	$\begin{gathered} \hline 162.00 \\ 52.98 \\ \hline \end{gathered}$	3	N/A	CMF
Continuous Green-T Intersection	Fatal \& Injury	$\begin{aligned} & \hline 4.97 \\ & 1.56 \\ & \hline \end{aligned}$	$\begin{gathered} 12.00 \\ 3.31 \\ \hline \end{gathered}$	$\begin{gathered} \hline 176.72 \\ 51.17 \\ \hline \end{gathered}$	2	N/A	CMF

SR 70 and Uihlein Signalized Intersection
 Cost Estimate

Pay Item	Description	Total Quantity	Unit	Weighted Avg. Unit Price		Amount	Notes
ROADWAY: Area of influence of intersection is 1800-ft or 0.34 miles along SR 70							This area area will be fully reconstructed
101-1	MOBILZATION	10.00	\%		\$	158,192.57	
102-1	MAINTENANCE OF TRAFFIC	10.00	\%		\$	158,192.57	
110-1-1	CLEARING \& GRUBBING	8.27	AC	\$ 11,000.00	\$	90,970.00	Clear area within the right of way in the 1800-ft limits: ($1800 * 200$ ft) $/ 43560=8.27 \mathrm{AC}$
120-1	REGULAR EXCAVATION	3,291.20	CY	5.10	\$	16,785.12	Cost per mile from model @ 0.34 miles
160-4	TYPE B STABIUZATION	20,206.67	SY	\$ 3.80	\$	76,785.33	Area to be constructed and stabilized including shoulders $-2 x$ $[1800 *(2.5+6.5+24+4+2.5)]+24(500)+30(750)+12 * 430 / 9$
285-709	OPTIONAL BASE,BASE GROUP 09	18,206.67	SY	\$ 17.00	\$	309,513.33	Paved area to be constructed:Use typical section $2 \times[1800 *(6.5+24+4)]$ $+24(500)+30(750)+12 * 430 / 9$
327-70-4	MIШNG EXISTASPH PAVT, 3"AVG DEPTH	270.78	SY	\$ 2.40	\$	649.87	Area to be milled and resurfaced: Use typical section (8388 SF/9) for side street - shape
334-1-24	SUPERPAVE ASPH CONC, TRAF D, PG 76-22,PMA	3,668.41	TN	\$ 100.00	\$	366,841.11	Assume Traffic C: Area to be contructed +Area to be millied: (17000 $* 400) / 2000$
337-7-41	ASPH CONC FC, TRAFFIC B,FC-12.5,PG 76-22	739.10	TN	\$ 105.00	\$	77,605.27	Assume Traffic C: $(17000 * 80) / 2000$
430-175-112	PIPE CULV, OPTMATL, ROUND, 12"S/CD	658.24	LF	\$ 91.00	\$	59,899.84	Cost per mile from model @ 0.34 miles
520-1-10	CONCREIE CURB \& GUITER, TYPE E	3,590.40	LF	\$ 20.00	\$	71,808.00	Cost per mile from model @ 0.34 miles
522-2	CONC REIE SIDEWALK AND DRIVEWAYS, 5 "	1,994.44	SY	\$ 38.00	\$	75,788.72	Cost per mile from model @ 0.34 miles
570-1-2	PERFORMANCE TURF, SOD	4,438.13	SY	\$ 2.60	\$	11,539.14	Cost per mile from model @ 0.34 miles
715-511-140	UGHTPOLECOMP,F\&I,SGLARM SM, AL, $40{ }^{\prime}$	11.90	EA	\$ 14,600.00	\$	173,740.00	Cost per mile from model @ 0.34 miles
	Signa lization	1.00	PI	\$ 250,000.00	\$	250,000.00	\$250,000 for SR 70 @ Uihlein
	Partial Total				\$	1,581,925.73	
	Roadway Total			-	\$	1,898,310.88	
999-25	INTIAL CONTINGENCY AMOUNT(DO NOTBID)	10\%			\$	189,831.09	
Intersection Grand Total					\$	2,088,142	
Notes:							
PAY ITEM list was created based on FDOTLRE Cost per Mile: MODEL WUUA24-U-19-BB. Contingency covers all other items not shown in Table							
Pavement design was assumed to be 4-in for travel lanes and 2-in for shoulders							
MOTand MOBILZATION 10\%EACH							
No right of way impacts. Potential minor utility impacts to be covered by contingency pay item							

SR 70 and Uihlein Road Roundabout
 Cost Estimate

Pay Item	Desc niption	Total Q ua ntity	Unit
OADWAY: Area of influence of intersection is 1800-ft or 0.34 miles along SR 70			

ROADWAY: Area of influence of intersection is 1800-ft or 0.34 miles along SR 70							
101-1	MOBILZATION	10.00	\%			\$	132,869.04
102-1	MAINTENANCE OF TRAFFIC	10.00	\%			\$	132,869.04
110-1-1	CLEARING \& GRUBBING	8.27	AC	\$	11,000.00	\$	90,970.00
120-1	REGULAR EXCAVATION	3,291.20	CY	\$	5.10	\$	16,785.12
160-4	TYPE B STABILZATIO N	24,675.56	SY	\$	3.80	\$	93,767.11
285-709	OPTIO NAL BASE,BASE GROUP 09	17,716.56	SY	\$	17.00	\$	301,181.4
327-70-4	MIШNG EXISTASPH PAVT, 3"AVG DEPTH	270.78	SY	\$	2.40	\$	649.87
334-1-24	SUPERPAVE ASPH C ONC, TRAF D, PG 76-22,PMA	3,570.20	TN	\$	100.00	\$	357,020.00
337-7-41	ASPH CONC FC,TRAFFIC B,FC-12.5,PG 76-22	719.44	TN	\$	105.00	\$	75,541.20
430-175-112	PIPE CULV, OPTMATL, ROUND, 12"S/CD	658.24	LF	\$	91.00	\$	59,899.84
520-1-10	CONCREIE CURB \& GUTIER, TYPE E	3,590.40	LF	\$	20.00	\$	71,808.00
522-2	CONCREIE SIDEWALK AND DRIVEWAYS, 5"	1,994.44	SY	\$	38.00	\$	75,788.72
570-1-2	PERFORMANCE TURF, SOD	4,438.13	SY	\$	2.60	\$	11,539.14
715-511-140	LGGTPOLE COMP,F\&I,SG LARM SM, AL, 40'	11.90	EA	\$	14,600.00	\$	173,740.00
	Signa lization		PI	\$	250,000.00	\$	
	Partial Total					\$	1,328,690.45
	Roadway Total				,	\$	1,594,428.54
999-25	INITIAL CONTING ENCY AMOUNT(DO NOTBID)	10\%				\$	159,442.85
-	Right of Way Cost Estimate	-	-		-	\$	30,000.00
Intersection Grand Total		,				\$	1,783,87

SR 70 and Uihlein Road Partial Displaced Left-tum Intersection Cost Estimate

Pay Item	Description	Total Quantity	Unit	Weighted Avg. Unit Price		Amount	Notes
ROADWAY: Area of influence of intersection is 1800-ft or 0.34 miles along SR 70							This area area will be fully reconstructed
101-1	MOBILZATION	10.00	\%		\$	181,258.17	
102-1	MAINTENANCE OF TRAFFIC	10.00	\%		\$	181,258.17	
110-1-1	CLEARING \& GRUBBING	8.27	AC	\$ 11,000.00	\$	90,970.00	Clear area within the right of way in the 1800-ft limits: (1800* 200 ft) $/ 43560=8.27 \mathrm{AC}$
120-1	REGULAR EXCAVATIO N	3,291.20	CY	\$ 5.10	\$	16,785.12	Cost per mile from model @ 0.34 miles
160-4	TYPE B STABILZATION	22,173.78	SY	\$ 3.80	\$	84,260.36	Area to be constructed and stabilized including unpaved shoulders Use shapes from DGN
285-709	OPTIONAL BASE,BASE GROUP 09	19,955.00	SY	\$ 17.00	\$	339,235.00	Paved area to be constructed - Stabilization minus 10\%
327-70-4	MIШNG EXISTASPH PAVT, 3"AVG DEPTH	340.22	SY	\$ 2.40	\$	816.53	Area to be milled and resurfaced: Use typical section (3062 SF/9) for side street - shape
334-1-24	SUPERPAVE ASPH CONC, TRAF D, PG 76-22,PMA	4,025.00	TN	\$ 100.00	\$	402,500.00	Assume Traffic C: Area to be contructed +Area to be millied: ($19955 * 400+340 * 200$)/2000 - Use Optional Base Group Area for new construction
337-7-41	ASPH CONC FC,TRAFFIC B,FC-12.5,PG 76-22	811.80	TN	\$ 105.00	\$	85,239.00	Assume Traffic C : $(19955 * 80+340 \mathrm{SY} * 80) / 2000$
430-175-112	PIPE CULV, OPTMATL, ROUND, 12"S/CD	658.24	LF	\$ 91.00	\$	59,899.84	Cost per mile from model @ 0.34 miles
520-1-10	CONCREIE CURB \& GUTIER, TYPE E	3,590.40	LF	\$ 20.00	\$	71,808.00	Cost per mile from model @ 0.34 miles
522-2	CONCREIE SIDEWALK AND DRIVEWAYS, 5"	1,994.44	SY	\$ 38.00	\$	75,788.72	Cost per mile from model @ 0.34 miles
570-1-2	PERFORMANCE TURF, SOD	4,438.13	SY	\$ 2.60	\$	11,539.14	Cost per mile from model @ 0.34 miles
715-511-140	LGGHTPOLE COMP,F\&I,SGLARM SM, AL, 40'	11.90	EA	\$ 14,600.00	\$	173,740.00	Cost per mile from model @ 0.34 miles
	Signa lization	2.00	PI	\$ 400,000.00	\$	400,000.00	$\$ 250,000$ for SR 70 @ Uihlein and $\$ 150,000$ for 1 displaced left intersections along SR 70) $=\$ 400,000$
	Partial Total				\$	1,812,581.71	
	Roadway Total				\$	2,175,098.06	
999-25	INITAL CONTING ENCY AMOUNT(DO NOTBID)	10\%			\$	217,509.81	
-	Right of Way Cost Estimate		-	-	\$	1,820,000.00	Details of the right of way estimate are included in Atta chment E .
Intersection Grand Total					\$	4,212,608	
Notes:							
PAY ITEM list was created based on FDOTLRE Cost per Mile: MODEL WUUA24-U-19-BB. Contingency covers all other items not shown in Table							
Pavement design was assumed to be 4-in fortravel lanes and 2-in for shoulders							
MOTand MOBILZATION 10\%EACH							
Right of way impacts are anticipated.							
Potential impacts to one pole of the overhead transmission lines.							

SR 70 and Uihlein Road Continuous Green Tee Intersection Cost Estimate

Pay Item	Description	Total Quantity	Unit	Weighted Avg. Unit Price		Amount	Notes
ROADWAY: Area of influence of intersection is 1800-ft or 0.34 miles along SR 70							This area area will be fully reconstructed
101-1	MOBILZATION	10.00	\%		\$	162,734.89	
102-1	MAINTENANCE OF TRAFFIC	10.00	\%		\$	162,734.89	
110-1-1	CLEARING \& GRUBBING	8.27	AC	\$ 11,000.00	\$	90,970.00	Clear area within the right of way in the 1800-ft limits: (1800* 200 ft) $/ 43560=8.27 \mathrm{AC}$
120-1	REGULAR EXCAVATION	3,291.20	CY	\$ 5.10	\$	16,785.12	Cost per mile from model @ 0.34 miles
160-4	TYPE B STABILZATION	21,339.00	SY	\$ 3.80	\$	81,088.20	Area to be constructed and stabilized including unpaved shouldersUse shapes from DGN
285-709	OPTIONAL BASE,BASE GROUP 09	19,205.00	SY	\$ 17.00	\$	326,485.00	Paved area to be constructed
327-70-4	MIUNG EXISTASPH PAVT, 3"AVG DEPTH	270.78	SY	\$ 2.40	\$	649.87	Area to be milled and resurfaced: Use typical section (2437 SF/9) for side street - shape
334-1-24	SUPERPAVE ASPH CONC, TRAF D, PG 76-22,PMA	3,868.00	TN	\$ 100.00	\$	386,800.00	Assume Traffic C: Area to be contructed +Area to be milled: ($19205 * 400+270 * 200$)/2000 - Use Optional Base Group Area for new construction
337-7-41	ASPH CONC FC,TRAFFIC B,FC-12.5,PG 76-22	779.00	TN	\$ 105.00	\$	81,795.00	Assume Traffic C : $(19205 * 80+270 \mathrm{SY} * 80) / 2000$
430-175-112	PIPE CULV, OPTMATL, ROUND, 12"S/CD	658.24	LF	\$ 91.00	\$	59,899.84	Cost per mile from model @ 0.34 miles
520-1-10	CONCREIE CURB \& GUTIER, TYPE E	3,590.40	LF	\$ 20.00	\$	71,808.00	Cost per mile from model @ 0.34 miles
522-2	CONCREIE SIDEWALK AND DRIVEWAYS, 5"	1,994.44	SY	\$ 38.00	\$	75,788.72	Cost per mile from model @ 0.34 miles
570-1-2	PERFORMANCE TURF, SOD	4,438.13	SY	\$ 2.60	\$	11,539.14	Cost per mile from model @ 0.34 miles
715-511-140	LG HTPOLE COMP,F\&I,SGLARM SM, AL, 40'	11.90	EA	\$ 14,600.00	\$	173,740.00	Cost per mile from model @ 0.34 miles
	Signa lization	1.00	Pl	\$ 250,000.00	\$	250,000.00	\$250,000 for SR 70 @ Uihlein
	Partial Total				\$	1,627,348.89	
	Roadway Total				\$	1,952,818.67	
999-25	INITAL CONTING ENCY AMOUNT(DO NOTBID)	10\%			\$	195,281.87	
Intersection Grand Total					\$	2,148,101	
Notes:							
PAY ITEM list was created based on FDOTLRE C ost per Mile: MODEL WUUA24-U-19-BB. C ontingency covers all other items not shown in Table							
Pavement design was assumed to be 4-in for travel lanes and 2-in for shoulders							
MOTand MOBILZATION 10\%EACH							
No right of way impacts. Potential minor utility impacts to be covered by contingency pay item							

SR 70 - ROW Cost Estimates for the Intersection Control Evaluation

Intersection	Configuration	Square footage or ROW Aquisition	ROW Cost Per Square Foot		Estimate
Uihlein at SR 70	Partial Displaced Left-Turn (DLT)	15178	\$120	\$	1,820,000
	Roundabout	236	\$120	\$	30,000
Del Webb at SR 70	Partial Displaced Left-Turn (DLT)	3456	\$120	\$	410,000
Bourneside at SR 70	Partial Displaced Left-Turn (DLT)	9921	\$120	\$	1,190,000
		9430	\$120	\$	1,130,000
	Quadrant roadway	439976	\$120	\$	52,800,000
CR 675 at SR 70 (2)	Quadrant roadway	68504	\$2,750	\$	10,000

(1) ROW cost estimates are based on the table below
(2) For ROW needs for CR 675, it is assumed that the property will require a full take. The actual property value was used for this estimate.

Property Value Estimates

Folio	Total Just Value as of 2018	Property Size (sq ft.)	Cost Per Sq. Ft.	Inflated cost (factor by 3)	Recommended Cost/Sq Ft to Apply to ROW
586104409	$\$$	$291,876.00$	7640.424	$\$$	38.20
586109109	$\$$	$425,015.00$	10672.2	$\$ 14.6046345$	120

(1) Property cost estimates were obtained from 2 residential properties near the Lakewood Ranch area. Currently, the Lakewood Ranch residential area is under development and there are no property values from the Manatee County Property Appraiser. The alternative intersection ROW needs are impacting the residential area under development; therefore, there are no property values that could be use for ROW estimates.
(2) These property estimates are used for the intersections of Uihlein, Del Webb, and Bourneside. Since CR 675 is a full take, the property appraised value for that property will be used.

ATTACHMENT F

Delay Calculations

Delay Information

Use this sheet to enter the delay information for each of the included control strategies.

Note: Delay calculations for Displaced Left-Turn and Continuous Green-T Intersection have been adjusted to account for Experienced Travel Time (ETT) based on guidance from the Highway Capacity Manual, Chapter 23, Ramp Terminals and Alternative Intersections. The ETT method accounts for origin-destination (O-D) path of a distributed network of closely space intersections that operate in a cluster. This method results in a single LOS/delay for an alternative intersection configuration with multiple signalized intersections which include multiple LOS/delay results (e.g. Displaced left turns are modeled as multiple signalized intersections with separate LOS/delay results for each; this method computes the LOS/delay as one intersection). The HCM describes direct application of this concept to Displaced Left-Turns and RCUTs, however, it may also be extended to continuous green-t intersections to account for the major-street through movement which separated from the rest of the intersection and not accounted for in the Synchro analysis.

User must enter value on this sheet

Note: Intersections 2, 4, and 5 are a single intersection at an actual DTL.
Modeling in SYNCHRO requires 3 separate intersections

ATTACHMENT G Benefit / Cost Summary

Outputs
This sheet compiles the data from summary tables in individual alternatives sheets. To populate the output sheet press the "Setup Wor the Alternatives_MasterList tab.

Agency:	FDOT District 1
Project Name:	SR 70 from Lorraine Rd to CR 675
Project Reference:	FDOT Project \#414506-2-22-01
Intersection:	SR 70 and Uihlein Rd
City:	Unincorporated Manatee County
State:	Florida
Performing Department or Organization:	Florida Department of Transportation District 1
Date:	6/24/2019
Analyst:	CB
Analysis Type	At-Grade Intersection

Analysis Summary

Cost Categories	Net Present Value of Costs								
	Traffic Signal		Roundabout			Displaced Left Turn (DLT)		Continuous Green-T Intersection	
Planning, Construction \& Right of Way Costs	\$	2,090,000	\$		1,756,000	\$	2,754,000	\$	2,150,000
Auto Passenger Delay	\$	13,405,170	\$		6,852,422	\$	12,303,784	\$	11,135,355
Truck Delay	\$	4,700,485	\$		2,409,071	\$	4,342,152	\$	3,922,714
Safety	\$	11,307,425	\$		8,562,933	\$	9,950,298	\$	9,688,590
Total cost	\$31,601,308		\$19,653,377			\$29,588,511		\$26,994,888	

ATTACHMENT H

FDOT ICE Stage 1 Form, Capacity Analysis for Planning of Junctions (CAP-X), and Stage 1 SPICE

Stage 1: Screening

To fulfill the requirements of Stage 1 (Screening) of FDOT's ICE procedures, complete the following form and append all supporting documentation. Completed forms can be submitted to the District Traffic Operations Engineer (DTOE) and District Design Engineer (DDE) for the project's approval.

Project Name	SR 70 from Lorraine Rd to CR 675			FDO	414506-2-22-01		Date	06/14/19
Subm	Nicole Harris, PE		Agency/Company		Stantec	Email	nicole.harris@stantec.com	
FDOT Co	sificatio	C3R - Suburban Residential		FDOT Distric	District 1	County	Manat	
roje	, ty/	illage)	Unincorporated Manatee County		Project Ty	Corridor Improvement Project		
Project Purpose the catalyst	oject a ing un	hat is y is it ken?)	A PD\&E Study is being completed with the purpose of increasing capacity and improving traffic operational conditions along the SR 70 corridor from Lorraine Road to CR 675/Waterbury Road. The Intersection Control Evaluation (ICE) is based on the future build improvements of the project which widen SR 70 to 4-lanes. This ICE will focus on the intersection with Uihlein Road.					
Project Setting Description (Describe the area surrounding the intersection)			SR 70 at Uihlein Rd Future Land Use is comprised of Mixed Use -Commerical. There is a major residential development that is changing the setting from rural to suburban/residential.					
Multimodal Context (Describe the pedestrian, bicycle, and transit activity in the area and the potential for activity based on surrounding land uses and development patterns)			There are paved sidewalks on the both sides of Uihlein Road along with marked bike lanes. For SR 70, there are proposed sidewalks and paved shoulders on both sides of the road.					

FDOT ICE: Stage 1

Crash History (Existing Intersections Only)
Append the most recent five-years of crash data for the intersection from the CAR System. If the crash data evidences any issues relating to safety
performance, discuss briefly here:
The crash history was not included in the analysis since the future conditions of SR 70 changes significantly from a 2 lane undivided to a 4-lane divided.
Instead, a predictive crash model was used for the analysis.

FDOT ICE: Stage 1

Control Strategy Evaluation
Provide a brief justification as to why each of the following control strategies should be advanced or not. Justification should consider potential environmental impacts.

Control Strategy	CAP-X Outputs			SPICE Ranking	Strategy to Be Advanced?	Justification
	V/C Ratio		Multimodal Score			
	Weekday AM Peak	Weekday PM Peak				
Two-Way StopControlled	N/A	N/A	N/A	N/A	No	Future volumes exceed Peak Hour Volume Thresholds based on FDOT ICE Manual, Figure A1
All-Way StopControlled	N/A	N/A	N/A	N/A	No	Future volumes exceed Peak Hour Volume Thresholds according to FDOT ICE Manual.
Signalized Control	0.83	0.54	4.8	7	Yes	Move to Stage 2 based on v/c for am and pm hours
Roundabout	2x2: 1.52 1x2: 1.84 1x1: 2.33	2x2: 0.89 1x2: 0.89 1x1: 1.72	5.6 / 6.7	1 Lane: 1	Yes	Although the CAP-X shows the V/C greater than one, this could be mitigated by a SB right-turn bypass lane which cannot be modeled in CAP-X
Median U-Turn	N/A	N/A	N/A	2 Lane: 4	No	Not applicable since this is a T-intersection.
RCUT (Signalized)	0.91	0.66	6.3	3	No	The future volumes seem to be near the limit fo Peak Hour Volume thresholds based on FDOT ICE Manual, Figure A3
RCUT (Unsignalized)	5.66	1.72	4.4	2	No	V/C ratio exceeded during the PM Peak.
Jughandle				N/A	No	Not included in the analysis.
Displaced LeftTurn	. 70 (Partial)	. 45 (Partial)	4.8	6	Yes	Move to Stage 2 for Partial DLT
Continuous Green Tee	0.61	0.53	3.0	5	Yes	Move to Stage 2
Quadrant Roadway	N/A	N/A	N/A		No	Not applicable since this is a T-intersection.
Partial MUT	N/A	N/A	N/A	N/A	No	Not applicable since this is a T-intersection.
Other 2 (Type)	N/A	N/A	N/A	N/A	No	No additional alternative intersection configurations were included in this analysis.

Resolution		
To be filled out by FDOT District Traffic Operations Engineer and District Design Engineer		
Project D	Multiple Viable Alternatives Identified: Continue to Stage 2	
Comments		
DTOE Name	Signature	Date
DDE Name	Signature	Date

Project Name:	SR 70 @ Uihlein
Project Number:	0
Location:	Unincorporated Manatee County
Date:	2045 AM
Number of Intersection Legs:	3
Which leg is the minor street?	N

Traffic Volume Demand						
		Vol	/hr)			nt (\%)
	U-Turn	Left	Thru		Heavy	Volume Growth
Eastbound	0	430	846	0		0.00\%
Westbound	0	0	1242	137		0.00\%
Southbound	0	142	0	663		0.00\%
Northbound	0	0	0	0		0.00\%
Adjustment Factor	0.80	0.95		0.85		\cdots
Suggested	0.80	0.95		0.85		2
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zon		C3R-Suburban Residential				
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3 -phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

TYPE OF INTERSECTION	$\begin{gathered} \text { Overall v/c } \\ \text { Ratio } \end{gathered}$	V/C Ranking	Multimodal Score	Pedestrian Accommodation s	$\begin{gathered} \text { Bicycle } \\ \text { Accommodation } \\ s \end{gathered}$	Transit Accommodatio ns
Continuous Green T N	0.61	1	3.0	Poor	Poor	Good
Partial Displaced Left Turn E-W	0.70	2	4.8	Fair	Fair	Good
Traffic Signal	0.83	3	4.8	Fair	Fair	Good
Signalized Restricted Crossing U -Iurn E W	0.91	4	6.3	Good	Good	Fair
2×2	1.52	5	5.6	Fair	Good	Good
1×2	1.84	6	5.6	Fair	Good	Good
1×1	2.33	7	6.7	Good	Good	Good
Unsignalized Restricted Crossing $\mathrm{U}-$ Turn E-W	5.66	8	4.4	Fair	Fair	Fair
--	--	--	--	--	--	--
--	--	--	--	--	--	--

Project Name:	SR 70 @ Uihlein
Project Number:	0
Location:	Unincorporated Manatee County
Date:	2045 AM
Number of Intersection Legs:	3
Major Street Direction:	North-South

Traffic Volume Demand						
	Volume (Veh/hr)				Percent (\%)	
	U-Turn	Left	Thru	Right	Heavy	Volume Growth
Eastbound	0	430	846	0		0.00\%
Westbound	0	0	1242	137		0.00\%
Southbound	0	142	0	663		0.00\%
Northbound	0	0	0	0		0.00\%
Adjustment Factor	0.80	0.95		0.85		
Suggested	0.80	0.95		0.85		,
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zone			C3R-Suburban Residential			
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3-phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

Capacity Analysis for Planning of Junctions
Detailed Report - Page 2 of 4

Number of Lanes for Non-roundabout Intersections																	
TYPE OF INTERSECTION	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Traffic Signal	FULL	-	0	0	0	-	1	0	1	7	2	2	0	-	0	2	1
Continuous Green T	N				-	-	1	-	1		2	2	-		\%	2	1
Partial Displaced Left Turn	E-W	,	0	1	0		1	1	1	,	2	2	0	-	0	2	1
Signalized Restricted Crossing U-Turn	E-W	,		7	0	,		\square	1	1	2	2	0	1	0	2	1
Unsignalized Restricted Crossing U-Turn	E-W	,		-	0			,	1	1	2	2	0	1	0	2	1

Number of Lanes for Interchanges																	
TYPE OF INTERCHANGE	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R

Results for Non-roundabout Intersections															
TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio			
Traffic Signal	FULL					,				1460	0.83	0.83	Fair	Fair	Good
Continuous Green T	N									1059	0.61	0.61	Poor	Poor	Good
Partial Displaced Left Turn	E-W					525	0.29	907	0.50	1218	0.70	0.70	Falr	Falr	Good
Signalized Restricted Crossing U-Turn	E-W	1630	$\underline{0.91}$	525	0.29	738	0.41	864	0.48			0.91	Good	Good	Fair
Unsignalized Restricted Crossing U-Turn	E-W	1329	5.66	1050	0.00	1476	0.00	1365	0.38			5.66	Fair	Fair	Fair

Capacity Analysis for Planning of Junctions
Detailed Report - Page 4 of 4

Results for Roundabouts																
TYPE OF	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio			
	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3				
1×1	2.33			1.16			0.00			1.73			2.33	Good	Good	Good
1×2	1.84			0.56	0.59		0.00			0.81	0.84		1.84	Fair	Good	Good
$\underline{2 \times 2}$	0.38	1.52		0.81	0.84		0.00	0.00		0.56	0.59		1.52	Fair	Good	food

Project Name:	SR 70 @ Uihlein
Project Number:	0
Location:	Unincorporated Manatee County
Date:	2045 PM
Number of Intersection Legs:	3
Which leg is the minor street?	N

Traffic Volume Demand						
		Volu	/hr)			nt (\%)
	U-Turn	Left	Thru个		Heavy	Volume Growth
Eastbound	0	698	1256	0		0.00\%
Westbound	0	0	781	120		0.00\%
Southbound	0	114	0	411		0.00\%
Northbound	0	0	0	0		0.00\%
Adjustment Factor	0.80	0.95		0.85		\cdots
Suggested	0.80	0.95	,	0.85		
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zon		C3R-Suburban Residential				
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3 -phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

Capacity Analysis for Planning of Junctions

TYPE OF INTERSECTION	Overall v/c Ratio	V/C Ranking	Multimodal Score	Pedestrian Accommodation s	\square	Transit Accommodatio ns
Partial Displaced Left Turn E-W	0.45	1	4.8	Fair	Fair	Good
Continuous Green T N	0.53	2	3.0	Poor	Poor	Good
Traffic Signal	0.54	3	4.8	Fair	Fair	Good
Signalized Restricted Crossing U-Iurn W	0.66	4	6.3	Good	Good	Fair
1×2	0.89	5	5.6	Fair	Good	Good
2×2	0.89	5	5.6	Fair	Good	Good
1×1	1.72	7	6.7	Good	Good	Good
Unsignalized Restricted Crossing 0 - Turn E-W	1.72	8	4.4	Fair	Fair	Fair
--	--	--	--	--	--	--
--	--	--	--	--	--	--

Project Name:	SR 70 @ Uihlein
Project Number:	0
Location:	Unincorporated Manatee County
Date:	2045 PM
Number of Intersection Legs:	3
Major Street Direction:	North-South

Traffic Volume Demand						
	Volume (Veh/hr)				Percent (\%)	
	U-Turn	Left	Thru	Right	Heavy	Volume Growth
Eastbound	0	698	1256	0		0.00\%
Westbound	0	0	781	120		0.00\%
Southbound	0	114	0	411		0.00\%
Northbound	0	0	0	0		0.00\%
Adjustment Factor	0.80	0.95		0.85		
Suggested	0.80	0.95		0.85		,
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zone			C3R-Suburban Residential			
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3-phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

Capacity Analysis for Planning of Junctions
Detailed Report - Page 2 of 4

Number of Lanes for Non-roundabout Intersections																	
TYPE OF INTERSECTION	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Traffic Signal	FULL	-	0	0	0	-	1	0	1	7	2	2	0	-	0	2	1
Continuous Green T	N				-	-	1	-	1		2	2	-		\%	2	1
Partial Displaced Left Turn	E-W	,	0	1	0		1	1	1	,	2	2	0	-	0	2	1
Signalized Restricted Crossing U-Turn	E-W	,		7	0	,		\square	1	1	2	2	0	1	0	2	1
Unsignalized Restricted Crossing U-Turn	E-W	,		-	0			,	1	1	2	2	0	1	0	2	1

Number of Lanes for Interchanges																	
TYPE OF INTERCHANGE	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R

Results for Non-roundabout Intersections															
TYPE OF INTERSECTION	Sheet	Zon (No	1 1	Zon (So	2 ${ }^{2}$	Zone 3	(East)	Zone 4	West) V/C		5 ter) V/C	Overall v/c Ratio			
Traffic Signal	FULL									940	0.54	0.54	Fair	Fair	Good
Continuous Green T	N									933	0.53	0.53	Poor	Poor	Good
Partial Displaced Left Turn	E-W					730	0.41	811	0.45	794	0.45	0.45	Falr	Falr	Good
Signalized Restricted Crossing U-Turn	E-W	1047	$\underline{0.58}$	730	0.41	482	0.27	1191	0.66			0.66	Good	Good	Fair
Unsignalized Restricted Crossing U-Turn	E-W	836	1.72	1460	$\underline{0.00}$	964	$\underline{0.00}$	2091	0.61			1.72	Fair	Fair	Fair

Capacity Analysis for Planning of Junctions
Detailed Report - Page 4 of 4

Results for Roundabouts																
E	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio			
	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3				
1×1	0.92			1.72	-		0.00			1.51	-		1.72	Good	cood	cood
1×2	0.79			0.84	0.89		0.00			0.69	0.70		0.89	Fair	Good	Good
$\underline{2 \times 2}$	0.19	0.62		0.69	0.70		0.00	0.00		0.84	0.89		0.89	Fair	Good	food

Federal Highway Administration (FHWA)Safety Performance for Intersection Control Evaluation Tool							
Results							
Summary of crash prediction results for each alternative							
Project Information							
Project Name:	SR 70 from Lorraine Rd to CR 675			Intersection Type		At-Grade Intersections	
Intersection:	SR 70 @ Uihlein			Opening Year		2025	
Agency:	D1			Design Year		2045	
Project Reference:	414506-2-22-01			Facility Type		On Urban and Suburban Arterial	
City:	Unincorporated Manatee County			Number of Legs		3-leg	
State:	FL			1-Way/2-Way		2-way Intersecting 2-way	
Date:	6/14/2019			\# of Major Street Lanes (both directions)		5 or fewer	
Analyst:	Nicole Harris, PE			Major Street Approach Speed		Less than 55 mph	
Crash Prediction Summary							
Control Strategy	Crash Type	Opening Yea	Design Year	Total Project Life Cycle	Rank	AADT Within Prediction Range?	Source of Prediction
Traffic Signal	Total	5.18	12.49	184.01	7	Yes	Calibrated SPF
	Fatal \& Injury	1.84	3.90	60.18	7	Yes	Calibrated SPF
1-lane Roundabout	Total	1.22	1.96	33.58	1	N/A	Uncalibrated SPF
	Fatal \& Injury	0.38	0.79	12.19			
2-lane Roundabout	Total	7.38	15.64	240.61	4	N/A	Uncalibrated SPF
	Fatal \& Injury	1.32	3.22	47.04			Uncalibrated SPF
Displaced Left Turn (DLT)	Total	4.56	10.99	161.93	6	N/A	CMF
	Fatal \& Injury	1.62	3.43	52.96			
Signalized RCUT	Total	4.40	10.62	156.41	3	A	CMF
	Fatal \& Injury	1.43	3.04	46.94			
Unsignalized RCUT	Total	2.29	6.45	90.34			CMF
	Fatal \& Injury	0.55	1.31	19.38	2	N/A	CMF
Continuous Green-T Intersection	Total	4.97	11.99	176.65	5	N/A	CMF
	Fatal \& Injury	1.56	3.31	51.15	5		

伿全

