DRAFT INTERSECTION CONTROL EVALUATION

(DEL WEBB BOULEVARD AT SR 70)

Florida Department of Transportation
District 1
SR 70
Limits of Project: from Lorraine Road to CR 675/Waterbury Road
Manatee County, Florida
Financial Management Number: 414506-2
ETDM Number: 14263
Date: JUNE 2019

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated December 14, 2016 and executed by FHWA and FDOT.

Memorandum

Date: June 18, 2019

To: David C. Turley, PE
FDOT District 1

From: Christopher Benitez, PE, PTOE
Stantec Consulting Services, Inc.

Reference: Intersection Control Evaluation (ICE): Del Webb Boulevard at SR 70

The purpose of this memorandum is to document the Florida Department of Transportation (FDOT) Intersection Control Evaluation (ICE) for the intersection of SR 70 and Del Webb Boulevard. This ICE has been completed as part of the FDOT District 1 project: 414506-2 - SR 70 between Lorraine Road to CR 675. The project proposes to increase capacity along SR 70 by widening from a two-lane undivided, to a four-lane divided facility along with traffic operational improvements at the intersections. The ICE analysis was initiated during the Project Development \& Environment (PD\&E) phase of the project due to the failing traffic operations during future conditions. According to the project Design Traffic Technical Memorandum (dated October 2018), the intersection of Del Webb Boulevard and SR 70 will operate at Level of Service (LOS) F as a two-way stop-controlled intersection.

An FDOT ICE for the intersection of Del Webb Boulevard and SR 70 was completed for both Stage 1 and Stage 2 for several alternative intersection configurations. Based on an interpretation of the results of the ICE analysis, the roundabout is the recommended option. The analysis included an evaluation of the traffic operations, safety, cost, multimodal accommodations, and other impacts such as environmental, utility, and right of way. The evaluation focused on the SR 70 future build conditions as a four-lane divided facility with a design speed of 55 mph . The results are provided in the Stage 2 ICE Form in Attachment A. The memorandum is organized as follows:

- Attachment A: ICE Stage 2 Form and Results
- Attachment B: Conceptual Plans
- Attachment C: Traffic Operational Analysis
- Attachment D: Safety Performance for Intersection Control Evaluation (SPICE)
- Attachment E: Cost Estimates
- Attachment F: Delay Calculations
- Attachment G: Benefit/Cost Summary
- Attachment H: ICE Stage 1 Form, Capacity Analysis for Planning of Junctions (CAP-X), and Stage 1 SPICE

Intersection Control Evaluation (ICE) Form

Stage 2: Intial Control Strategy Assessment

To fulfill the requirements of Stage 2 (Intersection Control Strategy) of FDOT's ICE procedures, complete the following form and append all supporting documentation. Completed forms can be submitted to the District Traffic Operations Engineer (DTOE) and District Design Engineer (DDE) for the project's approval.

Project Name	SR 70 from Lorraine Rd to CR 675	75	414506-2-22-01		Date	06/14/19
Submitted By	Nicole Harris, PE	Agency/Company	Stantec	Email	nicole.	stantec.com
List all viable intersection control strategies identified in Stage 1 (Screening):						
Signalized Control		Roundabout		RCUT (Signalized)		
Displaced Left-Turn		Continuous Green Tee				

FDOT ICE: Stage 2

Safety Performance							
Enter the most recent five (5) years of crash data from the CAR System.				Most recent year of crash data available			2018
Crash Type		2014	2015	2016	2017	2018	Total
Combined	Total						
	Fatal/Injury						
	PDO						
Single-Vehicle	Total	0	0	1	0	0	1
	Fatal/Injury	0	0	1	0	0	1
	PDO	0	0	0	0	0	0
Multi-Vehicle	Total	0	0	0	2	3	5
	Fatal/Injury	0	0	0	2	2	4
	PDO	0	0	0	0	1	1
Vehicle-Pedestrian	Fatal/Injury	0	0	0	0	0	0
Vehicle-Bicycle	Fatal/Injury	0	0	0	0	0	0
Total	All	0	0	1	2	3	6

Apply the FDOT SPICE Tool to model anticipated safety performance of each control strategy. For intersection types not accommodated in the tool, manually apply crash modification factors detailed in the ICE procedures document or qualitatively describe anticipated safety impacts.

Control Strategy	Opening Year	Design Year			
	Pricipated Impact on Safety Performance	Predicted Total Crashes	Predicted Fatal+Injury Crashes	Predicted Total Crashes	Predicted Fatal+Injury Crashes
Signalized Control	This option has a comparable Predicated Total Crashes for both opening and design year between the other options.	4.61	5.59	4.61	5.59
Roundabout	This option has the lowst Predicted Fatal+Injury crashes for both opening an design years	4.56	0.99	7.19	1.16
RCUT (Signalized)	This option has a comparable Predicated Total Crashes for both opening and design year between the other options.	3.92	4.36	3.92	4.36
Displaced Left-Turn	This option has a comparable Predicated Total Crashes for both opening and design year between the other options.	4.06	4.92	4.06	4.92
Continuous Green Tee	This option has a comparable Predicated Total Crashes for both opening and design year between the other options.	4.43	4.75	4.43	4.75

Costs and Benefit/Cost Ratios						
Remaining cognizant of the current level of detail of each control strategy's conceptual design, provide a cost estimate for each. You may want to include costs for preliminary engineering, required right-of-way acquisitions, construction, and a contingency. Apply the FDOT ICE Tool to determine the delay benefit-cost ratio (B/C), safety B/C, overall B/C, and net-present value for each control stratetgy.						
Control Strategy	ROW Costs (\$)	Construction Costs (\$)	FDOT ICE Tool Outputs			
			Delay B/C	Safety B/C	Overall B/C	Net Present Value
Signalized Control	-	\$2,340,000	Base	Base	Base	Base
Roundabout	-	\$2,110,000	Preferred	Preferred	Preferred	\$1,910,613
RCUT (Signalized)	-	\$2,530,000	Less than 0	3.24	1.62	\$267,414
Displaced Left-Turn	\$410,000	\$2,650,000	Less than 0	1.23	Less than 0	-\$2,718,400
Continuous Green Tee	-	\$2,400,000	8.41	5.81	14.21	\$2,090,554

Multimodal Accomodations										
Note the existing/anticipated level of pedestrian/bicyclist activity at the study intersection during the peak hours of the typical day. See ICE procedures document for activity level thresholds:										
Peak Hour:		Weekday AM Peak			Weekday PM Peak		Saturday Midday Peak		Acitivity Level	
		Major Street	Minor Street		Major Street	Minor Street	Major Street	Minor Street	Ped.	Bicycles
\# of ped. crossings (both approaches, if app.):									Low	Low
\# of cyclists (both approaches, if app.):										
Summarize the ability of each viable control strategy to accommodate the exisitng/anticipated level of:										
Control Strategy	Pedestrians and Bicyclists			Transit Services				Freight Needs		
Signalized Control	Crosswalks and bicycle lanes can be accommodated with this option.			There is no transit service in the vicinity of this intersection.				This option was designed to accommodate the designs trucks at the turns.		
Roundabout	Crosswalks and bicycle lanes can be accommodated with this option.			There is no transit service in the vicinity of this intersection.				This option was designed to accommodate the designs trucks at the turns.		
RCUT (Signalized)	Crosswalks and bicycle lanes can be accommodated with this option.			There is no transit service in the vicinity of this intersection.				This option was designed to accommodate the designs trucks at the turns.		
Displaced Left-Turn	Crosswalks and bicycle lanes can be accommodated with this option.			There is no transit service in the vicinity of this intersection.				This option was designed to accommodate the designs trucks at the turns.		
Continuous Green Tee	Crosswalks and bicycle lanes can be accommodated with this option.			There is no transit service in the vicinity of this intersection.				This option was designed to accommodate the designs trucks at the turns.		

Environmental, Utility, and Right-of-Way Impacts Summarize any issues related to environmental, utility, or right-of-way (including relocation) impacts specific to each control strategy. Be sure to consider the NEPA requirements for each control type.	
Signalized Control	No right of way acquisition required and no new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.
Roundabout	No right of way acquisition required and no new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.
RCUT (Signalized)	No right of way acquisition required and no new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.
Displaced Left-Turn	Right of way acquisition may be needed to accommodate displaced left turns. Potential for environmental impacts on the south side of SR 70. No impacts to the overhead transmission lines on the north side.
Continuous Green Tee	No right of way acquisition required and no new environmental impacts are anticipated. The overhead transmission lines on the north side of the corridor are not expected to be impacted.

Provide a brief justification as to why each of the following is either viable or not viable. If a single control strategy is recommended, select it as the only strategy to be advanced.

Control Strategy	Strategy to be Advanced?	
Signalized Control	No	This option was analyzed as the base intersection control which is why the B/C ratio is zero. The Roundabout and Continuous Green-Tee higher benefits relative to their cost.
Roundabout	Yes	1) Preferred option based on B/C analysis and NPV compared to base; 2) less severe crashes ; 3) traffic operations at LOS B or better; 4) no right of way impacts; and, 5) enhances the livable communities characteristic by lowering vehicle speeds and providing shorter crosswalk distances.
RCUT (Signalized)	No	Although this option has a high overall B/C ratio, it does not share the benefits to delay when compared to the Roundabout and Continuos Green Tee options.
Displaced Left-Turn	No	This option had a negative Net Present Value (NPV); therefore, it is not cost feasible compared to the base option of a signalized intersection.
Continuous Green Tee	No	This option had the second highest overall B/C. However, the roundabout is the preferred option based on the B/C analysis.
No		

Resolution			
To be filled out by FDOT District Traffic Operations Engineer and District Design Engineer			
Project Determination			\%
Comments			
DTOE Name	Signature		Date
DDE Name	Signature		Date

ATTACHMENT B Conceptual Plans

SR 70 and Del Webb Boulevard
 Signalized Intersection

SR 70 and Del Webb Boulevard Roundabout

SR 70 and Del Webb Boulevard Signalized Restricted Crossing U-Tum (RCUT)

SR 70 and Del Webb Boulevard Partial Displaced Left-Tum (East-West)

SR 70 and Del Webb Boulevard Continuous Green-Tee

Key Features:

- One new signalized intersection
- Westbound-through is a free flow movement
- Acceleration lane for the northbound-left tum movement to merge with the westbound-through
- No right-of-way acquisition needed
- No impacts to overhead transmission lines on north side of roadway

ATTACHMENT C

Traffic Operational Analysis

8: U-turn \& SR 70

8: U-turn \& SR 70

	\rightarrow	7	\checkmark	4	4	p	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	44	「	*	44		「"	
Traffic Volume (vph)	793	150	38	1155	0	170	
Future Volume (vph)	793	150	38	1155	0	170	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	4.0		6.0	
Lane Util. Factor	0.95	1.00	1.00	0.95		0.88	
Frt	1.00	0.85	1.00	1.00		0.85	
Flt Protected	1.00	1.00	0.95	1.00		1.00	
Satd. Flow (prot)	3374	1509	1687	3374		2787	
Flt Permitted	1.00	1.00	0.34	1.00		1.00	
Satd. Flow (perm)	3374	1509	599	3374		2787	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	835	158	40	1216	0	179	
RTOR Reduction (vph)	0	56	0	0	0	104	
Lane Group Flow (vph)	835	102	40	1216	0	75	
Heavy Vehicles (\%)	7\%	7\%	7\%	7\%	2\%	2\%	
Turn Type	NA	Perm	D.P+P	NA		Over	
Protected Phases	2		1	Free		1	
Permitted Phases		2	2				
Actuated Green, G (s)	32.2	32.2	38.0	50.0		5.8	
Effective Green, g (s)	32.2	32.2	38.0	50.0		5.8	
Actuated g/C Ratio	0.64	0.64	0.76	1.00		0.12	
Clearance Time (s)	6.0	6.0	6.0			6.0	
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)	2172	971	581	3374		323	
v/s Ratio Prot	0.25		0.01	0.36		0.03	
v/s Ratio Perm		0.07	0.04				
v/c Ratio	0.38	0.10	0.07	0.36		0.23	
Uniform Delay, d1	4.2	3.4	1.5	0.0		20.1	
Progression Factor	1.00	1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.5	0.2	0.1	0.3		0.4	
Delay (s)	4.7	3.6	1.5	0.3		20.4	
Level of Service	A	A	A	A		C	
Approach Delay (s)	4.6			0.3	20.4		
Approach LOS	A			A	C		
Intersection Summary							
HCM 2000 Control Delay			3.5		HCM 2000	Level of Service	A
HCM 2000 Volume to Capacity ratio			0.47				
Actuated Cycle Length (s)			50.0		Sum of lost	me (s)	12.0
Intersection Capacity Utilization			37.9\%		ICU Level of	Service	A
Analysis Period (min)			15				
C Critical Lane Group							

8: U-turn \& SR 70

8: U-turn \& SR 70

c Critical Lane Group

c Critical Lane Group

	\rightarrow	\checkmark	\square	7		4	p	
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR	
Lane Configurations	44	「	\square		44	${ }^{1}$		
Traffic Volume (vph)	793	150	0	0	1155	125	0	
Future Volume (vph)	793	150	0	0	1155	125	0	
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	
Total Lost time (s)	6.0	6.0			6.0	6.0		
Lane Util. Factor	0.95	1.00			0.95	1.00		
Frt	1.00	0.85			1.00	1.00		
Flt Protected	1.00	1.00			1.00	0.95		
Satd. Flow (prot)	3463	1549			3463	1816		
Flt Permitted	1.00	1.00			1.00	0.95		
Satd. Flow (perm)	3463	1549			3463	1816		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	835	158	0	0	1216	132	0	
RTOR Reduction (vph)	0	57	0	0	0	0	0	
Lane Group Flow (vph)	835	101	0	0	1216	132	0	
Heavy Vehicles (\%)	7\%	7\%	2\%	7\%	7\%	2\%	2\%	
Turn Type	NA	Perm	Perm		NA	Prot		-
Protected Phases	12				12	34		
Permitted Phases		12	12					
Actuated Green, G (s)	60.6	60.6			60.6	22.4		
Effective Green, g (s)	60.6	60.6			60.6	22.4		
Actuated g/C Ratio	0.64	0.64			0.64	0.24		
Clearance Time (s)								
Vehicle Extension (s)								
Lane Grp Cap (vph)	2209	988			2209	428		
v/s Ratio Prot	0.24				c0.35	c0.07		
v/s Ratio Perm		0.07						
v/c Ratio	0.38	0.10			0.55	0.31		
Uniform Delay, d1	8.2	6.7			9.6	29.9		
Progression Factor	1.00	1.00			1.00	0.20		
Incremental Delay, d2	0.1	0.0			0.3	0.4		
Delay (s)	8.3	6.7			9.9	6.3		
Level of Service	A	A			A	A		
Approach Delay (s)	8.1				9.9	6.3		
Approach LOS	A				A	A		
Intersection Summary								
HCM 2000 Control Delay			8.9	HCM 2000 Level of Service				A
			0.57					
Actuated Cycle Length (s)			95.0		Sum of los	ime (s)		24.0
Intersection Capacity Utilization			47.9\%		CU Level	Service		A
Analysis Period (min)			15					
c Critical Lane Group								

c Critical Lane Group

c Critical Lane Group

SR 70 @ DEL WEBB BLVD ROUNDABOUT ANALYSIS

2025 OPENING YEAR (HCM 6th Edition)								
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)	
	AM	PM	AM	PM	AM	PM	AM	PM
Overall	6.1	6.2	A	A				
SR 70 EB	5.2	6.5	A	A	0.26	0.38	35	55
SR 70 WB	6.8	5.5	A	A	0.38	0.26	55	30
Del Webb Blvd NB	5.7	8.3	A	A	0.11	0.17	25	25

2025 OPENING YEAR (Sidra Standard)								
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)	
	AM	PM	AM	PM	AM	PM	AM	PM
Overall	4.1	4.3	A	A				
SR 70 EB	3.6	3.6	A	A	0.22	0.31	35	55
SR 70 WB	3.7	3.8	A	A	0.31	0.21	60	35
Del Webb Blvd NB	11.6	13.4	B	B	0.12	0.16	25	25

2045 DESIGN YEAR (HCM 6th Edition)										
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)			
	AM	PM	AM	PM	AM	PM	AM	PM		
	$\mathbf{8 . 9}$	$\mathbf{9 . 7}$	A	A						
SR 70 EB	7.1	9.9	A	A	0.41	0.58	60	115		
SR 70 WB	10.2	7.4	B	A	0.57	0.40	100	55		
Del Webb Blvd NB	10.1	18.2	B	C	0.30	0.45	30	50		

2045 DESIGN YEAR (Sidra Standard)								
Approach	Delay (s)		Level of Service		v/c Ratio		95th \% Queue (ft)	
	AM	PM	AM	PM	AM	PM	AM	PM
Overall	4.7	5.0	A	A				
SR 70 EB	3.8	3.9	A	A	0.34	0.48	65	110
SR 70 WB	4.3	4.4	A	A	0.47	0.33	105	65
Del Webb Blvd NB	12.7	16.0	B	C	0.29	0.37	30	40

SITE LAYOUT

Site: [SR 70 \& Del Webb Blvd]
Site Category: (None)
Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Created: Thursday, January 24, 2019 7:28:11 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2025 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	72	2.0	0.112	5.7	LOS A	0.4	10.1	0.51	0.47	0.51	33.0
18	R2	16	2.0	0.112	5.7	LOS A	0.4	10.1	0.51	0.47	0.51	31.9
Appr		87	2.0	0.112	5.7	LOS A	0.4	10.1	0.51	0.47	0.51	32.8
East: SR 70												
1	L2	12	7.0	0.380	6.8	LOS A	2.0	53.5	0.26	0.12	0.26	34.9
8	T1	883	7.0	0.380	6.8	LOS A	2.0	53.5	0.26	0.12	0.26	34.8
Approach		895	7.0	0.380	6.8	LOS A	2.0	53.5	0.26	0.12	0.26	34.8
West: SR 70												
$\begin{aligned} & 4 \\ & 12 \end{aligned}$	T1	552	7.0	0.263	5.2	LOS A	1.2	32.9	0.08	0.02	0.08	35.6
	R2	104	7.0	0.263	5.2	LOS A	1.2	32.9	0.08	0.02	0.08	34.2
Approach		656	7.0	0.263	5.2	LOS A	1.2	32.9	0.08	0.02	0.08	35.4
All Vehicles		1638	6.7	0.380	6.1	LOS A	2.0	53.5	0.20	0.10	0.20	34.9

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 9:11:29 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2025 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	72	2.0	0.121	12.7	LOS B	0.4	11.2	0.50	0.77	0.50	34.5
18	R2	16	2.0	0.121	6.3	LOS A	0.4	11.2	0.50	0.77	0.50	33.3
Appr		87	2.0	0.121	11.6	LOS B	0.4	11.2	0.50	0.77	0.50	34.3
East: SR 70												
1	L2	12	7.0	0.313	10.5	LOS B	2.2	57.7	0.29	0.37	0.29	37.7
8	T1	883	7.0	0.313	3.6	LOS A	2.2	58.5	0.28	0.36	0.28	37.8
Approach		895	7.0	0.313	3.7	LOS A	2.2	58.5	0.28	0.36	0.28	37.8
West: SR 70												
$\begin{aligned} & 4 \\ & 12 \end{aligned}$	T1	552	7.0	0.217	3.6	LOS A	1.3	34.3	0.09	0.34	0.09	38.4
	R2	104	7.0	0.217	3.9	LOS A	1.3	34.3	0.08	0.36	0.08	36.8
Approach		656	7.0	0.217	3.6	LOS A	1.3	34.3	0.09	0.35	0.09	38.1
All Vehicles		1638	6.7	0.313	4.1	LOS A	2.2	58.5	0.21	0.38	0.21	37.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 9:16:24 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_sidra.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2025 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	94	2.0	0.173	8.3	LOS A	0.6	15.4	0.62	0.62	0.62	31.7
18	R2	8	2.0	0.173	8.3	LOS A	0.6	15.4	0.62	0.62	0.62	30.6
Appr		102	2.0	0.173	8.3	LOS A	0.6	15.4	0.62	0.62	0.62	31.6
East: SR 70												
1	L2	14	7.0	0.255	5.5	LOS A	1.2	30.7	0.25	0.13	0.25	35.5
8	T1	576	7.0	0.255	5.5	LOS A	1.2	30.7	0.25	0.13	0.25	35.5
Approach		589	7.0	0.255	5.5	LOS A	1.2	30.7	0.25	0.13	0.25	35.5
West: SR 70												
$\begin{aligned} & 4 \\ & 12 \end{aligned}$	T1	851	7.0	0.378	6.5	LOS A	2.1	55.0	0.10	0.03	0.10	34.9
	R2	91	7.0	0.378	6.5	LOS A	2.1	55.0	0.10	0.03	0.10	33.6
Approach		941	7.0	0.378	6.5	LOS A	2.1	55.0	0.10	0.03	0.10	34.8
All Vehicles		1633	6.7	0.378	6.2	LOS A	2.1	55.0	0.19	0.10	0.19	34.8

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 9:13:41 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2025 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	94	2.0	0.164	14.0	LOS B	0.6	15.2	0.58	0.85	0.58	33.6
18	R2	8	2.0	0.164	7.6	LOS A	0.6	15.2	0.58	0.85	0.58	32.5
Appr		102	2.0	0.164	13.4	LOS B	0.6	15.2	0.58	0.85	0.58	33.5
East: SR 70												
1	L2	14	7.0	0.212	10.5	LOS B	1.3	35.3	0.30	0.39	0.30	37.6
8	T1	576	7.0	0.212	3.6	LOS A	1.4	36.1	0.29	0.38	0.29	37.7
Approach		589	7.0	0.212	3.8	LOS A	1.4	36.1	0.29	0.38	0.29	37.7
West: SR 70												
$\begin{aligned} & 4 \\ & 12 \end{aligned}$	T1	851	7.0	0.313	3.6	LOS A	2.1	56.2	0.11	0.34	0.11	38.3
	R2	91	7.0	0.313	3.9	LOS A	2.1	56.2	0.10	0.35	0.10	36.8
Approach		941	7.0	0.313	3.6	LOS A	2.1	56.2	0.11	0.34	0.11	38.2
All Vehicles		1633	6.7	0.313	4.3	LOS A	2.1	56.2	0.20	0.39	0.20	37.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 9:20:08 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_sidra.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2045 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	132	2.0	0.300	10.1	LOS B	1.2	29.5	0.65	0.67	0.71	31.3
18	R2	47	2.0	0.300	10.1	LOS B	1.2	29.5	0.65	0.67	0.71	30.3
Appr		179	2.0	0.300	10.1	LOS B	1.2	29.5	0.65	0.67	0.71	31.1
East: SR 70												
1	L2	40	7.0	0.565	10.2	LOS B	3.7	98.7	0.45	0.28	0.45	33.0
8	T1	1216	7.0	0.565	10.2	LOS B	3.7	98.7	0.45	0.28	0.45	33.1
Approach		1256	7.0	0.565	10.2	LOS B	3.7	98.7	0.45	0.28	0.45	33.1
West: SR 70												
$\begin{aligned} & 4 \\ & 12 \end{aligned}$	T1	835	7.0	0.409	7.1	LOS A	2.3	61.2	0.20	0.08	0.20	34.6
	R2	158	7.0	0.409	7.1	LOS A	2.3	61.2	0.20	0.08	0.20	33.3
Approach		993	7.0	0.409	7.1	LOS A	2.3	61.2	0.20	0.08	0.20	34.4
All Vehicles		2427	6.6	0.565	8.9	LOS A	3.7	98.7	0.36	0.23	0.37	33.4

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 7:28:09 PM
Project: C:IProjectsISR 70ISR70_del_webb_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2045 AM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	132	2.0	0.294	14.3	LOS B	1.2	30.2	0.63	0.86	0.63	34.0
18	R2	47	2.0	0.294	8.0	LOS A	1.2	30.2	0.63	0.86	0.63	32.8
Appr		179	2.0	0.294	12.7	LOS B	1.2	30.2	0.63	0.86	0.63	33.6
East: SR 70												
1	L2	40	7.0	0.468	11.0	LOS B	3.9	102.5	0.47	0.46	0.47	36.9
8	T1	1216	7.0	0.468	4.0	LOS A	4.0	105.4	0.46	0.43	0.46	37.0
Approach		1256	7.0	0.468	4.3	LOS A	4.0	105.4	0.46	0.43	0.46	37.0
West: SR 70												
4	T1	835	7.0	0.340	3.8	LOS A	2.5	65.7	0.22	0.36	0.22	37.9
	R2	158	7.0	0.340	4.0	LOS A	2.5	65.7	0.21	0.37	0.21	36.4
Appr		993	7.0	0.340	3.8	LOS A	2.5	65.7	0.21	0.36	0.21	37.6
All V	icles	2427	6.6	0.468	4.7	LOS A	4.0	105.4	0.37	0.43	0.37	37.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 9:21:25 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_sidra.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2045 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$		Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Del Webb Blvd												
3	L2	155	2.0	0.448	18.2	LOS C	1.9	48.4	0.80	0.90	1.18	28.1
18	R2	26	2.0	0.448	18.2	LOS C	1.9	48.4	0.80	0.90	1.18	27.2
Appro		181	2.0	0.448	18.2	LOS C	1.9	48.4	0.80	0.90	1.18	27.9
East: SR 70												
1	L2	48	7.0	0.396	7.4	LOS A	2.1	54.2	0.39	0.25	0.39	34.2
8	T1	812	7.0	0.396	7.4	LOS A	2.1	54.2	0.39	0.25	0.39	34.4
Approach		860	7.0	0.396	7.4	LOS A	2.1	54.2	0.39	0.25	0.39	34.4
West: SR 70												
$\begin{aligned} & 4 \\ & 12 \end{aligned}$	T1	1244	7.0	0.578	9.9	LOS A	4.3	112.6	0.29	0.13	0.29	33.2
	R2	147	7.0	0.578	9.9	LOS A	4.3	112.6	0.29	0.13	0.29	32.0
Approach		1392	7.0	0.578	9.9	LOS A	4.3	112.6	0.29	0.13	0.29	33.1
All Vehicles		2433	6.6	0.578	9.7	LOS A	4.3	112.6	0.36	0.23	0.39	33.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 7:28:33 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_hcm6.sip8

MOVEMENT SUMMARY

Site: [SR 70 \& Del Webb Blvd]
2045 PM Peak-Hour
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed \qquad mph
South: Del Webb Blvd												
3	L2	155	2.0	0.371	16.9	LOS B	1.6	41.8	0.73	0.94	0.84	32.4
18	R2	26	2.0	0.371	10.5	LOS B	1.6	41.8	0.73	0.94	0.84	31.4
Appr		181	2.0	0.371	16.0	LOS B	1.6	41.8	0.73	0.94	0.84	32.3
East: SR 70												
1	L2	48	7.0	0.329	11.0	LOS B	2.3	61.9	0.45	0.47	0.45	36.9
8	T1	812	7.0	0.329	4.0	LOS A	2.4	64.2	0.43	0.43	0.43	37.0
Approach		860	7.0	0.329	4.4	LOS A	2.4	64.2	0.44	0.44	0.44	37.0
West: SR 70												
	T1	1244	7.0	0.481	3.9	LOS A	4.2	110.3	0.28	0.37	0.28	37.6
	R2	147	7.0	0.481	4.2	LOS A	4.2	110.3	0.27	0.37	0.27	36.1
Approach		1392	7.0	0.481	3.9	LOS A	4.2	110.3	0.28	0.37	0.28	37.4
All Vehicles		2433	6.6	0.481	5.0	LOS A	4.2	110.3	0.37	0.43	0.38	36.8

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: STANTEC | Processed: Thursday, January 24, 2019 9:22:43 PM
Project: C:IProjects\SR 70ISR70_del_webb_2025_2045_am_pm_sidra.sip8

ATTACHMENT D Safety Performance for Intersection Control Evaluation (SPICE)

Federal Highway Administration (FHWA)Safety Performance for Intersection Control Evaluation Tool							
Results							
Summary of crash prediction results for each alternative							
Project Information							
Project Name:	SR 70 from Lorraine Rd to CR 675			Intersection Type		At-Grade Intersections	
Intersection:	SR 70 @ Del Webb			Opening Year		2025	
Agency:	D1			Design Year		2045	
Project Reference:	414506-2-22-01			Facility Type		On Urban and Suburban Arterial	
City:	Unincorporated Manatee County			Number of Legs		3-leg	
State:	FL			1-Way/2-Way		2-way Intersecting 2-way	
Date:	6/14/2019			\# of Major Street Lanes (both directions)		5 or fewer	
Analyst:	Nicole Harris, PE			Major Street Approach Speed		Less than 55 mph	
Crash Prediction Summary							
Control Strategy	Crash Type	Opening Year	Design Year	Total Project Life Cycle	Rank	AADT Within Prediction Range?	Source of Prediction
Traffic Signal	Fatal \& Injury	$\begin{aligned} & 3.26 \\ & 1.23 \end{aligned}$	$\begin{aligned} & \hline 5.31 \\ & 1.91 \end{aligned}$	$\begin{aligned} & 89.50 \\ & 32.85 \end{aligned}$	5	Yes	Calibrated SPF
2-lane Roundabout	Total		8.01	139.11	1	N/A	Uncalibrated SPF
	Fatal \& Injury	0.89	1.47				
Displaced Left Turn (DLT)	Total	2.86	4.67	78.76	4	N/A	CMF
	Fatal \& Injury	1.08	1.68	28.90			
Signalized RCUT	Total	2.77	4.51	76.08	2	N/A	CMF
	Fatal \& Injury	0.96	1.49	25.62	2	N/A	CMF
Continuous Green-T Intersection	Total	3.13	5.09	85.92	3	N/A	CMF
	Fatal \& Injury	1.04	1.62	27.92	3		

SR 70 and Del Webb Boulevard Signalized Intersection (base condition) Cost Estimate

SR 70 and Del Webb Boulevard Roundabout Intersection Cost Estimate

SR 70 and Del Webb Boulevard Continuous Green Tee Intersection Cost Estimate

SR 70 and Del Webb Boulevard Restricted Crossing U-Tum Intersection Cost Estimate

SR 70 and Del Webb Boulevard Partial Displaced Left Intersection Cost Estimate

Pay Item	Description	Total Quantity	Unit	Weighted Avg. Unit Price		Amount	Notes
ROADWAY: Area of influence of intersection is 2200 -ft or 0.42 miles along SR 70							This area area will be fully reconstructed
101-1	MOBILZATION	10.00	\%		\$	200,589.91	
102-1	M AINTENANCE OF TRAFFIC	10.00	\%		\$	200,589.91	
110-1-1	CLEARING \& GRUBBING	10.10	AC	\$ 11,000.00	\$	111,111.11	C lear area within the right of way in the 1800-ft limits: ($2200 * 200$ $\qquad \mathrm{ft}) / 43560=10.10 \mathrm{AC}$
120-1	REGULAR EXCAVATION	4,065.60	CY	\$ 5.10	\$	20,734.56	Cost per mile from model @ 0.42 miles
160-4	TYPE B STABILZATION	24,059.78	SY	\$ 3.80	\$	91,427.16	Area to be constructed and stabilized including unpaved shoulders - Use shapes from DGN
285-709	OPTIONAL BASE,BASE GROUP 09	21,653.00	SY	\$ 17.00	\$	368,101.00	Paved area to be constructed
327-70-4	MILUNG EXISTASPH PAVT, 3"AVG DEPTH	321.22	SY	\$ 2.40	\$	770.93	Area to be milled and resurfaced: Use typical section (2891 SF/9) for side street - shape
334-1-24	SUPERPAVE ASPH CONC, TRAF D, PG 76-22,PMA	4,362.70	TN	\$ 100.00	\$	436,270.00	Assume Traffic C: Area to be contructed +Area to be milled: ($13538 * 400+$ 9351*200)/2000 - Use Optional Base Group Area fornew construction
337-7-41	ASPH CONC FC,TRAFFIC B,FC-12.5,PG 76-22	878.96	TN	\$ 105.00	\$	92,290.80	Assume Traffic C : $(13538 * 80+9351 \mathrm{SY} * 80) / 2000$
430-175-112	PIPE CULV, OPTMATL, ROUND, 12"S/CD	813.12	LF	\$ 91.00	\$	73,993.92	Cost per mile from model @ 0.42 miles
520-1-10	CONCREIE CURB \& GUTIER, TYPE E	4,435.20	LF	\$ 20.00	\$	88,704.00	Cost per mile from model @ 0.42 miles
522-2	CONCREIE SIDEWALK AND DRIVEWAYS, 6"	2,463.72	SY	\$ 38.00	\$	93,621.36	Cost per mile from model @ 0.42 miles
570-1-2	PERFORMANCE TURF, SOD	5,482.40	SY	\$ 2.60	\$	14,254.24	Cost per mile from model @ 0.42 miles
715-511-140	UGHTPOLE COMP,F\&I,SGLARM SM, AL, 40'	14.70	EA	\$ 14,600.00	\$	214,620.00	Cost per mile from model @ 0.42 miles
	Signa lization	2.00	PI	\$ 400,000.00	\$	400,000.00	$\$ 250,000$ for SR 70 @ Del Webb and $\$ 150,000$ for signal along SR 70 for displaced left $=\$ 400,000$
	Partial Total				\$	2,005,899.08	
	Roadway Total				\$	2,407,078.89	
999-25	INITAL CONTING ENCY AMOUNT(DO NOTBID)	10\%			\$	240,707.89	
-	Right of Way Cost Estimate		-	-	\$	410,000.00	Details of the right of way estimate are included in Attachment E .
Intersection Grand Total					\$	3,057,787	
Notes:							
PAY ITEM list was created based on FDOTLRE C ost per Mile: MODEL WUUA24-U-19-BB. Contingency covers all other items not shown in Table							
Pavement design was assumed to be 4-in fortravel lanes and 2-in for shoulders							
MOTand MOBILZATION 10\%EACH							
Potential right of way impacts are included for this altemative intersection.							

SR 70 - ROW Cost Estimates for the Intersection Control Evaluation

Intersection	Configuration	Square footage or ROW Aquisition	ROW Cost Per Square Foot	ROW Cost Estimate	
Uihlein at SR 70	Partial Displaced Left-Turn (DLT)	15178	\$120	\$	1,820,000
Del Webb at SR 70	Partial Displaced Left-Turn (DLT)	3456	\$120	\$	410,000
Bourneside at SR 70	Partial Displaced Left-Turn (DLT)	9921	\$120	\$	1,190,000
		9430	\$120	\$	1,130,000
	Quadrant roadway	439976	\$120	\$	52,800,000
CR 675 at SR 70 (2)	Quadrant roadway	68504	\$2,750	\$	10,000

(1) ROW cost estimates are based on the table below
(2) For ROW needs for CR 675, it is assumed that the property will require a full take. The actual property value was used for this estimate.

Property Value Estimates

Folio	Total Just Value as of 2018	Property Size (sq ft.)	Cost Per Sq. Ft.	Inflated cost (factor by 3)	Recommended Cost/Sq Ft to Apply to ROW	
586104409	$\$$	$291,876.00$	7640.424	$\$$	38.20	114.6046345

(1) Property cost estimates were obtained from 2 residential properties near the Lakewood Ranch area. Currently, the Lakewood Ranch residential area is under development and there are no property values from the Manatee County Property Appraiser. The alternative intersection ROW needs are impacting the residential area under development; therefore, there are no property values that could be use for ROW estimates.
(2) These property estimates are used for the intersections of Uihlein, Del Webb, and Bourneside. Since CR 675 is a full take, the property appraised value for that property will be used.

ATTACHMENT F

Delay Calculations

Delay Information

Use this sheet to enter the delay information for each of the included control strategies.

Note: Delay calculations for Displaced Left-Turn, Signalized Restricted Crossing U-turn, and Continuous Green-T Intersection have been adjusted to account for Experienced Travel Time (ETT) based on guidance from the Highway Capacity Manual, Chapter 23, Ramp Terminals and Alternative Intersections. The ETT method accounts for origin-destination (O-D) path of a distributed network of closely space intersections that operate in a cluster. This method results in a single LOS/delay for an alternative intersection configuration with multiple signalized intersections which include multiple LOS/delay results (e.g. Displaced left turns are modeled as multiple signalized intersections with separate LOS/delay results for each; this method computes the LOS/delay as one intersection). The HCM describes direct application of this concept to Displaced Left-Turns and RCUTs, however, it may also be extended to continuous green-t intersections to account for the major-street through movement which separated from the rest of the intersection and not accounted for in the Synchro analysis.

				Opening Year			Design Year		
At-Grade Intersections				Average vehicle delay			Average vehicle delay		
Control Strategy		Delay Type	Units	AM peak	PM peak	Weekend peak	AM peak	PM peak	Weekend peak
Traffic Signal	Single Input	Single Input	sec/veh	5.9	7.8		8.2	10.5	
Roundabout	Single Input	Single Input	sec/veh	6.1	6.2		8.9	9.7	
Displaced Left Turn (DLT)	Single Input	Worksheet (Partial E-W)	sec/veh	8.9	11.4		12.5	14.5	
Signalized Restricted Crossing U-Turn (RCUT)	Select Input Type	Worksheet (E-W)	sec/veh	7.1	8.1		10.3	10.9	
Continuous Green-T Intersection	Single Input	See worksheet	sec/veh	4.2	6.4		6.4	9.6	

Continuous Green T Intersection - Delay Calculation

Del Webb and SR 70

ATTACHMENT G Benefit / Cost Summary button in the Alternatives_MasterList tab.

Agency:	FDOT District 1
Project Name:	SR 70 from Lorraine Rd to CR 675
Project Reference:	FDOT Project \#414506-2-22-01
Intersection:	SR 70 and Del Webb Blvd
City:	Unincorporated Manatee County
State:	Florida
Performing Department or Organization:	Florida Department of Transportation District 1
Date:	6/14/0019
Analyst:	CB
Analysis Type	At-Grade Intersection

Analysis Summary

Cost Categories	Net Present Value of Costs									
	Traffic Signal		Roundabout		Displaced Left Turn (DLT)		Signalized Restricted Crossing UTurn (RCUT)		Continuous Green-T Intersection	
Planning, Construction \& Right of Way Costs	\$	2,340,000	\$	2,110,000	\$	2,732,000	\$	2,530,000	\$	2,400,000
Auto Passenger Delay	\$	4,295,198	\$	3,950,585	\$	6,369,038	\$	4,797,225	\$	3,331,768
Truck Delay	\$	1,633,786	\$	1,502,525	\$	2,422,701	\$	1,824,694	\$	1,267,171
Safety	\$	6,455,259	\$	5,177,569	\$	5,680,628	\$	5,066,635	\$	5,536,522
Total cost		\$14,822,472								

Select Base Case for Benefit-Cost Comparison: (Choose from list)	Traffic Signal				
Net Present Value of Benefits Relative to Base Case					
Benefit Categories	Traffic Signal	Roundabout	Displaced Left Turn (DLT)	Signalized Restricted Crossing U- Turn (RCUT)	Continuous Green-T Intersection
Auto Passenger Delay		\$ 344,613	\$ $(2,073,840)$	$(502,026)$	963,430
Truck Delay		131,261	(788,915)	$(190,907)$	366,615
Safety		\$ 1,277,690	\$ 774,631	1,388,624	\$ 918,736
Net Present Value of Benefits		\$ 1,753,565	(2,088,124)	695,690	\$ 2,248,782
Net Present Value of Costs		\$ (157,048)	\$ 630,276	428,276	158,229
Net Present Value of Improvement		\$ 1,910,613	\$ $(2,718,400)$	267,414	\$ 2,090,554
Benefit-Cost (B/C) Ratio		Control strategy preferred. Benefits are greater than base case and cost is less than base case.	Control Strategy not preferred. Benefits are less than base case and cost is greater than base case.	1.62	14.21
Delay B/C		Control strategy preferred. Benefits are greater than base case and cost is less than base case.	Control Strategy not preferred. Benefits are less than base case and cost is greater than base case.	Control Strategy not preferred. Benefits are less than base case and cost is greater than base case.	8.41
Safety B/C		Control strategy preferred. Benefits are greater than base case and cost is less than base case.	1.23	3.24	5.81

ATTACHMENT H

FDOT ICE Stage 1 Form, Capacity Analysis for Planning of Junctions (CAP-X), and Stage 1 SPICE

Stage 1: Screening

To fulfill the requirements of Stage 1 (Screening) of FDOT's ICE procedures, complete the following form and append all supporting documentation. Completed forms can be submitted to the District Traffic Operations Engineer (DTOE) and District Design Engineer (DDE) for the project's approval.

FDOT ICE: Stage 1

Crash History (Existing Intersections Only)
Append the most recent five-years of crash data for the intersection from the CAR System. If the crash data evidences any issues relating to safety
performance, discuss briefly here:
The crash history was not included in the analysis since the future conditions of SR 70 changes significantly from a 2 lane undivided to a 4-lane divided.
Instead, a predictive crash model was used for the analysis.

FDOT ICE: Stage 1

Control Strategy Evaluation
Provide a brief justification as to why each of the following control strategies should be advanced or not. Justification should consider potential environmental impacts.

Control Strategy	CAP-X Outputs			SPICE Ranking	Strategy to Be Advanced?	Justification
	V/C Ratio		Multimodal Score			
	Weekday AM Peak	Weekday PM Peak				
Two-Way StopControlled	3.90	4.93	3.70	3	No	V/C capacity ratios are exceeded.
All-Way StopControlled	1.64	1.64	6.7	N/A	No	V/C capacity ratios are exceeded.
Signalized Control	0.43	0.49	4.8	8	Yes	Move to Stage 2 based on v/c for am and pm hours
Roundabout	1×2.55 2x2. 55 1×11.07		$\begin{aligned} & 5.6 \\ & 5.6 \\ & 6.7 \\ & \hline \end{aligned}$	1 \& 4	Yes	Move to Stage 2 based on SPICE recommendation and v / c less than 1
Median U-Turn	N/A	N/A	N/A	N/A	No	Not applicable since this is a T-intersection.
RCUT (Signalized)	0.44	0.47	6.3	5	Yes	Move to Stage 2 based on v/c for am and pm hours
RCUT (Unsignalized)	0.57	1.10	4.4	2	No	V/C ratio exceeded during the PM Peak.
Jughandle				N/A	No	Not included in the analysis.
Displaced LeftTurn	0.43	0.45	4.8	7	Yes	Partial Displaced Left-Turn: Move to Stage 2 based on v/c for am and pm hours
Continuous Green Tee	0.34	0.48	3.0	6	Yes	Move to Stage 2 based on v/c for am and pm hours
Quadrant Roadway	N/A	N/A	N/A		No	Not applicable since this is a T-intersection.
Partial MUT	N/A	N/A	N/A	N/A	No	Not applicable since this is a T-intersection.
Other 2 (Type)	N/A	N/A	N/A	N/A	No	No additional alternative intersection configurations were included in this analysis.

Resolution		
To be filled out by FDOT District Traffic Operations Engineer and District Design Engineer		
Project D	Multiple Viable Alternatives Identified: Continue to Stage 2	
Comments		
DTOE Name	Signature	Date
DDE Name	Signature	Date

Project Name:	SR 70 @ Del Webb
Project Number:	0
Location:	Unincorporated Manatee County
Date:	$2045 \quad$ AM
Number of Intersection Legs:	3
Which leg is the minor street?	S

Traffic Volume Demand						
		Volu	/hr)			nt (\%)
	U-Turn	Left	Thru个	Right	Heavy	Volume Growth
Eastbound	0	0	793	150		0.00\%
Westbound	0	38	1155	0		0.00\%
Southbound	0	0	0	0		0.00\%
Northbound	0	125	0	45		0.00\%
Adjustment Factor	0.80	0.95		0.85		\cdots
Suggested	0.80	0.95	,	0.85		
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zon		C3R-Suburban Residential				
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3 -phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

TYPE OF INTERSECTION	$\begin{gathered} \text { Overall v/c } \\ \text { Ratio } \end{gathered}$	V/C Ranking	Multimodal Score	Pedestrian Accommodation s	Bicycle Accommodation s	Transit Accommodatio ns
Continuous Green T S	0.34	1	3.0	Poor	Poor	Good
Traffic Signal	0.43	2	4.8	Fair	Fair	Good
Partial Displaced Left Turn E-W	0.43	2	4.8	Fair	Fair	Good
SIgnalized Restricted Crossing U-Iurn E- W	0.44	4	6.3	Good	Cood	Fair
1×2	0.55	5	5.6	Fair	Good	Good
2 X 2	0.55	5	5.6	Fair	Good	Good
Unsignalized Restricted Crossing $0-$ Turn E-W	0.57	7	4.4	Fair	Fair	Fair
1×1	1.07	8	6.7	Good	Good	Good
All-Way Stop Control	1.64	9	6.7	Good	Good	Good
Two-Way Stop Control E-W	3.90	10	3.7	Poor	Fair	Good

Project Name:	SR 70 @ Del Webb
Project Number:	0
Location:	Unincorporated Manatee County
Date:	$2045 \quad$ AM
Number of Intersection Legs:	3
Major Street Direction:	North-South

Traffic Volume Demand						
	Volume (Veh/hr)				Percent (\%)	
	U-Turn	Left	Thru	Right	Heavy	Volume Growth
Eastbound	0	0	793	150		0.00\%
Westbound	0	38	1155	0		0.00\%
Southbound	0	0	0	0		0.00\%
Northbound	0	125	0	45		0.00\%
Adjustment Factor	0.80	0.95		0.85		
Suggested	0.80	0.95		0.85		,
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zone			C3R-Suburban Residential			
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3-phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

Capacity Analysis for Planning of Junctions
Detailed Report - Page 2 of 4

Number of Lanes for Non-roundabout Intersections																	
TYPE OF INTERSECTION	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Traffic Signal	FULL	-	1	0	1	-	0	0	0	-	0	2	1		1	2	0
Two-Way Stop Control	E-W	-	1	0	1	-	0	0	0	-	0	2	1	,	1	2	0
All-Way Stop Control	FULL	-	1	0	1	-	0	0	0		0	2	1	-	1	2	0
Continuous Green T	$\underline{\text { S }}$	-	1	-	1			-	,		-	2	1	-	1	2	-
Partial Displaced Left Turn	E-W		1	1	1		0	1	0	-	0	2	1	-	1	2	0
Signalized Restricted Crossing U-Turn	E-W			,	1			2	0	1	0	2	1	1	1	2	0
Unsignalized Restricted Crossing U-Turn	E-W			\square	1				0	1	0	2	1	1	1	2	0

Number of Lanes for Interchanges																	
TYPE OF INTERCHANGE	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R

Results for Non-roundabout Intersections															
TYPE OF INTERSECTION	Sheet	Zon (No	V/C	Zon (So	v/C	Zone	East)	Zone 4	(West)	Zon (Cen	5 er) V/C	Overall v/c Ratio			
Traffic Signal	FULL									760	0.43	0.43	Fair	Fair	Good
Two-Way Stop Control	E-W									--	3.90	3.90	Poor	Fair	Good
All-Way Stop Control	FULL									2461	1.64	1.64	Good	Good	Good
Continuous Green T	S	7								602	0.34	0.34	Poor	Poor	Good
Partial Displaced Left Turn	E-W					468	0.26	682	0.38	753	0.43	0.43	Fair	Fair	Good
Signalized Restricted Crossing U-Turn	E-W	682	0.38	629	0.35	799	0.44	505	0.28			0.44	Good	Good	Falr
Unsignalized Restricted Crossing U-Turn	E-W	1364	0.00	849	0.57	1277	0.31	1010	0.00			0.57	Fair	Fair	Fair

Capacity Analysis for Planning of Junctions
Detailed Report - Page 4 of 4

Results for Roundabouts																
TYPE OF ROUNDABOUT	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio			
	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3				
1×1	0.00			0.77			0.30			1.07			1.07	Good	Good	Good
1×2	0.00			0.38	0.40		0.26			0.52	0.55		0.55	Fair	Good	Good
$\underline{2 \times 2}$	0.00	0.00		0.52	0.55		0.21	0.07		0.38	0.40		0.55	Fair	Good	Good

Project Name:	SR 70 @ Del Webb
Project Number:	0
Location:	Bradenton, FL
Date:	$2045 \quad$ PM
Number of Intersection Legs:	3
Which leg is the minor street?	S

Traffic Volume Demand						
		Volu	/hr)			nt (\%)
	U-Turn	Left	Thru个	Right	Heavy	Volume Growth
Eastbound	0	0	1182	140		0.00\%
Westbound	0	46	771	0		0.00\%
Southbound	0	0	0	0		0.00\%
Northbound	0	147	0	25		0.00\%
Adjustment Factor	0.80	0.95		0.85		\cdots
Suggested	0.80	0.95	,	0.85		
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zon		C3R-Suburban Residential				
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3 -phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

Capacity Analysis for Planning of Junctions

TYPE OF INTERSECTION	Overall v/c Ratio	V/C Ranking	Multimodal Score	Pedestrian Accommodation s	Bicycle Accommodation s	Transit Accommodatio ns
Partial Displaced Left Turn E-W	0.45	1	4.8	Fair	Fair	Good
SIgnailzed Restricted Crossing 0 -Iurn $E-$ W	0.47	2	6.3	Good	Good	Fair
Continuous Green T S	0.48	3	3.0	Poor	Poor	Good
Traffic Signal	0.49	4	4.8	Fair	Fair	Good
1×2	0.57	5	5.6	Fair	Good	Good
2×2	0.57	5	5.6	Fair	Good	Good
1×1	1.09	7	6.7	Good	Good	Good
Unsignalized Restricted Crossing $0-$ Turn E-W	1.10	8	4.4	Fair	Fair	Fair
All-Way Stop Control	1.64	9	6.7	Good	Good	Good
Two-Way Stop Control E-W	4.93	10	3.7	Poor	Fair	Good

Project Name:	SR 70 @ Del Webb
Project Number:	0
Location:	Bradenton, FL
Date:	$2045 \quad$ PM
Number of Intersection Legs:	3
Major Street Direction:	North-South

Traffic Volume Demand						
	Volume (Veh/hr)				Percent (\%)	
	U-Turn	Left	Thru介		Heavy Vehicles	Volume Growth
Eastbound	0	0	1182	140	7.00\%	0.00\%
Westbound	0	46	771	0	7.00\%	0.00\%
Southbound	0	0	0	0	0.00\%	0.00\%
Northbound	0	147	0	25	2.00\%	0.00\%
Adjustment Factor	0.80	0.95	-	0.85	,	-
Suggested	0.80	0.95	,	0.85	,	
Truck to PCE Factor				Suggested $=2.00$		2.00
FDOT Context Zone			C3R-Suburban Residential			
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3 -phase signal		Suggested = 1750		1750
		4-phase signal		Suggested = 1700		1700

Capacity Analysis for Planning of Junctions
Detailed Report - Page 2 of 4

Number of Lanes for Non-roundabout Intersections																	
TYPE OF INTERSECTION	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Traffic Signal	FULL	-	1	0	1	-	0	0	0	-	0	2	1		1	2	0
Two-Way Stop Control	E-W	-	1	0	1	-	0	0	0	-	0	2	1	,	1	2	0
All-Way Stop Control	FULL	-	1	0	1	-	0	0	0		0	2	1	-	1	2	0
Continuous Green T	$\underline{\text { S }}$	-	1	-	1			-	,		-	2	1	-	1	2	-
Partial Displaced Left Turn	E-W		1	1	1		0	1	0	-	0	2	1	-	1	2	0
Signalized Restricted Crossing U-Turn	E-W			,	1			2	0	1	0	2	1	1	1	2	0
Unsignalized Restricted Crossing U-Turn	E-W			\square	1				0	1	0	2	1	1	1	2	0

Number of Lanes for Interchanges																	
TYPE OF INTERCHANGE	Sheet	Northbound				Southbound				Eastbound				Westbound			
		U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R

Results for Non-roundabout Intersections															
TYPE OF INTERSECTION	Sheet	Zo (No CLV	V/C	Zon (So	V/C	Zone 3	East)	Zone 4	(West)	Zon (Ce	5 V/C	Overall v/c Ratio			
Traffic Signal	FULL									850	0.49	0.49	Fair	Fair	Good
Two-Way Stop Control	E-W									--	4.93	4.93	Poor	Fair	Good
All-Way Stop Control	FULL									2465	1.64	1.64	Good	Good	Good
Continuous Green T	S									842	0.48	0.48	Poor	Poor	Good
Partial Displaced Left Turn	E-W					684	0.38	488	0.27	790	0.45	0.45	Fair	Fair	Good
Signalized Restricted Crossing U-Turn	E-W	488	0.27	840	0.47	625	0.35	708	0.39			0.47	Good	Good	Falr
Unsignalized Restricted Crossing U-Turn	E-W	975	0.00	1265	1.10	874	0.25	1415	0.00			1.10	Fair	Fair	Fair

Capacity Analysis for Planning of Junctions
Detailed Report - Page 4 of 4

Results for Roundabouts																
TYPE OF	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio			
	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3				
1X1	0.00			1.09			0.47			0.75	-		1.09	Good	Good	cood
1×2	0.00			0.53	0.57		0.37			0.36	0.38		0.57	Fair	Good	Good
$\underline{2 \times 2}$	0.00	0.00		0.36	0.38		0.37	0.06		0.53	0.57		0.57	Fair	Good	Bood

Federal Highway Administration (FHWA) Safety Performance for Intersection Control Evaluation Tool							
Results							
Summary of crash prediction results for each alternative							
Project Information							
Project Name:	SR 70 from Lorraine Rd to CR 675			Intersection Type		At-G	rsections
Intersection:	SR 70 @ Del Webb			Opening Year			
Agency:	D1			Design Year			
Project Reference:	414506-2-22-01			Facility Type		On Urban	urban Arterial
City:	Unincorporated Manatee County			Number of Legs		3-leg	
State:	FL			1-Way/2-Way		2-way Intersecting 2-way	
Date:	6/14/2019			\# of Major Street Lanes (both directions)		5 or fewer	
Analyst:	Nicole Harris, PE			Major Street Approach Speed		Less than 55 mph	
Crash Prediction Summary							
Control Strategy	Crash Type	Opening Year	Design Year	Total Project Life Cycle	Rank	AADT Within Prediction Range?	Source of Prediction
Traffic Signal	Fatal \& Injury	$\begin{aligned} & \hline 3.50 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 2.05 \end{aligned}$	$\begin{aligned} & 96.15 \\ & 35.27 \end{aligned}$	8	Yes	Calibrated SPF
Minor Road Stop	Total	$\begin{aligned} & 2.21 \\ & 0.80 \end{aligned}$	$\begin{aligned} & \hline 3.64 \\ & 1.27 \end{aligned}$	$\begin{aligned} & \hline 61.06 \\ & 21.68 \end{aligned}$	3	Yes	Calibrated SPF
All Way Stop	Fatal \& Injury	No SPF No SPF	No SPF No SPF	No SPF No SPF	--	N/A	N/A
1-lane Roundabout	Fatal \& Injury	$\begin{aligned} & 1.02 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 0.42 \end{aligned}$	$\begin{gathered} 24.47 \\ 7.35 \end{gathered}$	1	N/A	Uncalibrated SPF
2-Iane Roundabout	Fatal \& Injury		$\begin{aligned} & 8.29 \\ & 1.52 \end{aligned}$	$\begin{gathered} 143.87 \\ 25.48 \end{gathered}$	4	N/A	Uncalibrated SPF
Displaced Left Turn (DLT)	Fatal \& Injury	3.08 1.16	$\begin{aligned} & \hline 5.02 \\ & 1.80 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 84.61 \\ & 31.03 \\ & \hline \end{aligned}$	7	N/A	CMF
Signalized RCUT	Fatal \& Injury	2.97 1.03	$\begin{aligned} & 4.85 \\ & 1.60 \end{aligned}$	$\begin{aligned} & \hline 81.73 \\ & 27.51 \end{aligned}$	5	N/A	CMF
Unsignalized RCUT	Fatal \& Injury	1.44 0.37	$\begin{aligned} & \hline 2.37 \\ & 0.59 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 39.69 \\ 9.97 \\ \hline \end{gathered}$	2	N/A	CMF
Continuous Green-T Intersection	Fatal \& Injury	$\begin{aligned} & \hline 3.36 \\ & 1.12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.47 \\ & 1.74 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 92.30 \\ & 29.98 \\ & \hline \end{aligned}$	6	N/A	CMF

