DESIGN TRAFFIC TECHNICAL MEMORANDUM

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by the Florida Department of Transportation (FDOT) pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated May 26, 2022 and executed by the Federal Highway Administration and FDOT.

DESIGN TRAFFIC TECHNICAL MEMORANDUM

Florida Department of Transportation
District 1

State Road 70
from County Road 29 to Lonesome Island Road
Highlands County, Florida
Financial Project Number: 414506-5-22-01

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated December 14, 2016 and executed by FHWA and FDOT.

Prepared by:
H.W. Lochner, Inc.

4350 West Cypress St, Suite 800
Tampa, FL 33607

November 2018

This item has been digitally signed and sealed by Joseph N. Samus, Jr, PE on the date adjacent to the seal.

Joseph N SamusDigitally signed by Joseph N Samus Date: 2020.12.07 16:20:52-05'00'
Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Table of Contents

1.0 Introduction 1
1.1 Project Description 1
1.2 Purpose 1
2.0 Existing Conditions 2
2.1 Hurricane Evacuation 2
2.2 Roadway Characteristics 2
2.3 Validation of Traffic Factors 2
2.4 Validation of Growth Rate 3
2.5 Traffic Volumes 4
2.6 Operational Analyses 4
2.7 Crash Data and Safety Analysis 6
3.0 Development of Future Traffic 8
4.0 Future Conditions 9
4.1 No-Build Operational Analyses 9
4.2 Alternative Development 10
4.3 Build Operational Analyses 11
4.4 Noise Analysis 11
4.5 Air Quality Analysis 11
5.0 Summary 13

Appendices

Appendix A: SR 70 PD\&E Study DTTM

Appendix B: Evacuation Transportation Analysis Report
Appendix C: Florida Traffic Online (2017) Historical Data
Appendix D: Existing Year (2018) HCS7 Reports
Appendix E: Crash Data
Appendix F: TURNS5 Design Hour Volumes
Appendix G: No-Build HCS7 Reports
Appendix H: No-Build HSM Predictive Method
Appendix I: Build HSM Predictive Method
Appendix J: Build HCS7 Reports
Appendix K: Noise Analysis
Appendix L: Air Quality Analysis
List of Figures
Figure 1 - SR 70 Study Area Map 1
Figure 2 - Existing (2018) Lane Geometry and Design Traffic Volumes 5
Figure 3 - Collision Diagram 6
Figure 4 - Future Design Traffic Volumes 8
Figure 5 - Build Alternative 10
List of Tables
Table 1 - Roadway Characteristics 2
Table 2 - Historical D Factors 3
Table 3-2017 Field Measured D Factors 3
Table 4 - Recommended Design Traffic Factors 3
Table 5 - Historical AADT Growth 3
Table 6 - D1RPM AADT Growth 4
Table 7 - Highlands County BEBR Population Forecast 4
Table 8 - Existing Year (2018) Intersection Analysis 5
Table 9 - Existing Year (2018) Arterial Analysis 5
Table 10 - Summary Crash Data (2013 to 2017) 7
Table 11 - Future Year No-Build Intersection Analyses. 9
Table 12 - Future Year No-Build Arterial Analysis 10
Table 13 - Design Year (2045) Predicted Crash Frequency 11
Table 14 - Future Year Build Intersection Analyses 12
Table 15 - Future Year Build Arterial Analysis 12

1.0 Introduction

1.1 PROJECT DESCRIPTION

The Florida Department of Transportation (FDOT) is conducting a roadway capacity improvement project along SR 70 from CR 29 to Lonesome Island Road in Highlands County. This improvement project involves widening SR 70 from an existing two-lane undivided facility to a four-lane divided roadway. SR 70 is a principal arterial and the primary east-west highway for the Lake Placid/southern Highlands County area, providing regional access to employment centers, agricultural lands, and residential areas across the state. SR 70 is a designated hurricane evacuation route and part of the SIS highway network. The project is approximately 4.3 miles in length. The SR 70 study area map is shown in Figure 1. This effort supplements the efforts of the SR 70 Project Development and Environment (PD\&E) Study (FPID No. 414506-1-22-01) completed by the FDOT, District 1 in March 2017. The SR 70 PD\&E Study, hereinafter referred to as the "SR 70 Western Study", Design Traffic Technical Memorandum (DTTM) can be found in Appendix A.

Figure 1 - SR 70 Study Area Map

1.2 PURPOSE

The purpose of this project is to improve operational conditions for emergency evacuations along the SR 70 corridor from CR 29 to Lonesome Island Road. As stated in the SR 70 Western Study, the Florida Division
of Emergency Management's Statewide Regional Evacuation Study Program determined that SR 70, within the study area, is a critical segment with significant queues experienced during emergency evacuations.

This memorandum documents the comparison of the SR 70 Western Study with updated traffic data and the development of design traffic for the existing (2018), opening (2025), interim (2035), and design (2045) years within the study area of SR 70 from CR 29 to Lonesome Island Road. The purpose of this memorandum is to justify the widening of SR 70 within the study area from an undivided two-lane typical section to a divided four-lane typical section.

2.0 Existing Conditions

2.1 HURRICANE EVACUATION

A Florida Statewide Regional Evacuation Study was conducted in 2010 for the Central Florida Region by the Florida Division of Emergency Management, the Division of Community Planning, the FDOT, and Central Florida Regional Planning Council. As part of this study, SR 70 from US 27 to CR 721 was identified as a critical facility in the event of a level D evacuation. The US 27 and CR 721 intersections were also identified amongst the highest vehicle queue segments in the Central Florida Region for a level D evacuation. The Evacuation Transportation Analysis Report from the study can be found in Appendix B.

2.2 ROADWAY CHARACTERISTICS

SR 70 within the limits of the study area functions as a two-lane rural principle arterial and hurricane evacuation route with a posted speed limit of 60 miles per hour (mph). SR 70 is a Strategic Intermodal System (SIS) highway facility, serves as part of the emergency evacuation route network, and facilitates east-west freight and people mobility. Roadway characteristics for SR 70 that within the study area are included in Table 1. There is only one significant one-leg stop controlled intersection within the study area at the cross street of SR 70 and CR 29.

2.3 VALIDATION OF TRAFFIC FACTORS

Based on the FDOT Project Traffic Forecasting Handbook, a standard K factor of 9.5 percent is used for arterials in a rural area. This is consistent with the K factor utilized in the SR 70 Western Study and is recommended for the SR 70 study corridor.

Historical directional (D) factors and 24-hour bi-directional counts collected on August 15, 2017 were obtained from FDOT Florida Traffic Online (2017), and can be found in Appendix C, to verify the recommended D factor of 58.83% along SR 70 from the SR 70 Western Study. Table 2 and Table 3 summarize the historical and field measured D factors observed along SR 70, east of US 27 since 2015, respectively. A recommended D factor of 58.83% remains reasonable for the SR 70 study corridor since it lies between the historical and field measured D factors.

Table 2 - Historical D Factors

Year	D Factor (\%)
2015	59.2
2016	59.9
2017	60.1
Average	$\mathbf{5 9 . 7}$

Table 3-2017 Field Measured D Factors

Peak Hour	D Factor (\%)	Directionality
AM	56.4	Westbound
PM	52.3	Westbound

Along SR 70, east of US 27, a truck (T) factor of 21.9% was observed for all three years of 2015 to 2017 from FDOT Florida Traffic Online (2017). Assuming that the design hour truck (DHT) factor is one-half of the T factor, the DHT factor for SR 70 would be 11.0%. The recommended DHT factor of 14.0% from the SR 70 Western Study is slightly higher than the observed DHT factor. Therefore, a new DHT of 11.0% is recommended for the SR 70 study corridor.

The design traffic factors, summarized in Table 4, are recommended for the SR 70 study corridor.

Table 4 - Recommended Design Traffic Factors

Factor	Value (\%)	Consistency with the Western Study
Standard K Factor	9.5	Same
D Factor	58.83	Same
DHT Factor	11.0	Updated

2.4 VALIDATION OF GROWTH RATE

In order to update the existing traffic volumes from the SR 70 Western Study from 2015 to 2018, an annual growth rate needs to be established for the study corridor. The historical annual average daily traffic (AADT), the model volumes, and the Bureau of Economic and Business Research (BEBR) estimated population growth rate were compared to determine the growth rate for the study corridor. The Western Study assumed a 2.0% annual growth rate for the SR 70 corridor.

Historical AADT data was gathered from FDOT Florida Traffic Online (2017) for SR 70, east of US 27. Table 5 shows the historical annual growth rate from 2015 to 2017. An overall growth rate of 3.64% was observed for the study corridor.

Table 5 - Historical AADT Growth

Year	AADT	Annual Growth Rate
2015	4,100	
2016	4,300	
2017	4,400	

The latest available version of the District 1 Regional Planning Model (D1RPM), Version 1.0 .3 with base year 2010 was examined for the study corridor. The maximum observed model volumes along SR 70 from CR 29 to Lonesome Island Road were compared between the 2010 base and 2040 horizon outputs and are summarized in Table 6. The model indicates an annual growth rate of 3.17% for the study corridor.

Table 6 - D1RPM AADT Growth

Year	AADT	Annual Growth Rate
2010	4,000	3.17%
2040	7,800	

Data was obtained from the BEBR "Projections of Florida Population by County, 2020-2045" and is summarized in Table 7.

Table 7 - Highlands County BEBR Population Forecast

BEBR Base Year		Population	Annual Growth Rate
2017		102,138	-
BEBR 2045	Low	98,000	-0.14%
	Medium	118,200	0.56%
	High	143,500	1.45%

The historical AADT growth rate of 3.64% and model AADT growth rate of 3.17% are both greater than the "High" growth rate of 1.45% projected for Highlands County based on the BEBR data. Therefore, a recommended growth rate of 3.0% is reasonable based upon the historical, model, and BEBR "High" growth rates. This results in a higher growth rate than the 2.0% from the SR 70 Western Study.

2.5 TRAFFIC VOLUMES

The existing year (2018) design hour volumes were developed by applying a 3.0% annual growth rate directly to the SR 70 Western Study existing (2015) turning movement volumes. Figure 2 shows the existing (2018) AM and PM peak hour turning movement volumes, along with the existing lane geometry for the study corridor.

2.6 OPERATIONAL ANALYSES

Intersection and arterial operational analysis was conducted along SR 70 from CR 29 to Lonesome Island Road for the existing year (2018). Highway Capacity Software (HCS7) was utilized to conduct Highway Capacity Manual $6^{\text {th }}$ Edition (HCM6E) two-way stop control analysis and directional two-lane highway segment analysis, and can be found in Appendix D. The results of the existing year (2018) intersection analysis at SR 70 and CR 29 for the AM and PM peak hours are shown in Table 8. The results of the analysis indicate that the SR 70 and CR 29 intersection currently meets the level of service (LOS) standard C, as defined for non-urbanized areas in the FDOT 2013 Quality/Level of Service Handbook, for each of the analysis hours.

Figure 2 - Existing (2018) Lane Geometry and Design Traffic Volumes

Table 8 - Existing Year (2018) Intersection Analysis

Approach	Movement	AM Peak Hour		PM Peak Hour	
		Delay (s/veh)	LOS	Delay (s/veh)	LOS
Eastbound	Left Turn	7.8	A	7.9	A
	Through	0.0	A	0.0	A
	Total	0.4	A	0.4	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	11.7	B	11.2	B

The results of the existing year (2018) arterial analysis along SR 70 from CR 29 to Lonesome Island Road for the AM and PM peak hours are shown in Table 9. The results of the analysis indicate that the SR 70 corridor from CR 29 to Lonesome Island Road currently meets the FDOT LOS standard C for non-urbanized areas for each of the analysis hours.

Table 9 - Existing Year (2018) Arterial Analysis

Direction	AM Peak Hour		PM Peak Hour	
	Volume to Capacity (v/c)	LOS	Volume to Capacity (v/c)	LOS
	0.19	B	0.11	B
Westbound	0.13	B	0.16	B

2.7 CRASH DATA AND SAFETY ANALYSIS

Crash data along SR 70 from CR 29 to Lonesome Island Road for the years 2013 through 2017 was obtained from Signal Four Analytics and spot-verified against the crash long forms for accuracy. Figure 3 shows the collision diagram for the study corridor by crash type. Table $\mathbf{1 0}$ details the total number of crashes within the project area separated by crash type, crash severity, lighting conditions, and weather conditions. A total of 37 crashes were reported during the five year period, for an average of seven crashes per year. With 37 total crashes and an average AADT of 4,280 over five years, the results show that the project area has a crash rate of 1.102 crashes per million miles driven, which corresponds to 1.604 times the statewide average of 0.687 crashes per million miles driven for similar facility types. A detailed description of the crash data and the statewide average crash rates for rural segments can be found in Appendix \mathbf{E}.

The most common crash type was hitting an animal, followed by hitting the guardrail. Twelve of the 37 crashes occurred in the dark without lighting, including a collision with a bicyclist. While unsignalized, nine crashes occurred along the corridor at the intersection of SR 70 and Lonesome Island Road. An analysis of this intersection may lead to the need for additional safety measures to be taken at this location.

Two of the crashes within the five year study period resulted in fatalities. The first of these fatalities was the result of a vehicle colliding with a bicycle just west of Lonesome Island Road. The second occurred when a vehicle drifted over the roadway centerline in the rain, striking another vehicle.

Figure 3 - Collision Diagram

Table 10 - Summary Crash Data (2013 to 2017)

Crash Data	Years					Total Crashes	Average Per Year	Percentage of Total Crashes
	2013	2014	2015	2016	2017			
Crash Type								
Animal	1	3	0	2	1	7	1.4	18.9\%
Guardrail	0	0	2	1	3	6	1.2	16.2\%
Rear End	1	0	2	1	0	4	0.8	10.8\%
Sideswipe, Opposite Direction	0	0	4	0	0	4	0.8	10.8\%
Other	0	2	0	2	0	4	0.8	10.8\%
Sideswipe, Same Direction	0	0	1	1	1	3	0.6	8.1\%
Other Non-Fixed Object	0	2	1	0	0	3	0.6	8.1\%
Angle	0	0	1	0	1	2	0.4	5.4\%
Ran Off Road	1	0	1	0	0	2	0.4	5.4\%
Ran into Canal	0	0	0	1	0	1	0.2	2.7\%
Bicycle	0	0	0	0	1	1	0.2	2.7\%
Total	3	7	12	8	7	37	7.4	100.0\%
Crash Severity								
Property Damage Only	1	4	8	6	4	23	4.6	62.2\%
Minor Injury	0	2	1	0	1	4	0.8	10.8\%
Moderate Injury	1	0	0	2	1	4	0.8	10.8\%
Severe Injury	1	1	2	0	0	4	0.8	10.8\%
Fatal	0	0	1	0	1	2	0.4	5.4\%
Total	3	7	12	8	7	37	7.4	100.0\%
Lighting Conditions								
Daylight	1	4	9	5	4	23	4.6	62.2\%
Dark, Not Lighted	2	3	1	3	3	12	2.4	32.4\%
Dusk	0	0	1	0	0	1	0.2	2.7\%
Dawn	0	0	1	0	0	1	0.2	2.7\%
Total	3	7	12	8	7	37	7.4	100.0\%
Weather Conditions								
Clear	1	3	7	7	5	23	4.6	62.2\%
Cloudy	2	3	2	1	2	10	2.0	27.0\%
Rain	0	1	3	0	0	4	0.8	10.8\%
Total	3	7	12	8	7	37	7.4	100.0\%

Four of the crashes within the five year study period resulted in severe injury. These crashes were the result of the following circumstances:

- A vehicle drifted over to the other side of the roadway and collided with an oncoming vehicle, causing both vehicles to strike the guardrail.
- A motorcyclist struck a vehicle carrying a trailer while it was turning left onto Lonesome Island Road, which resulted in serious injury to the motorcyclist.
- As a freight truck slowed down due to a vehicle turning left onto Lonesome Island Road, another freight truck rear ended it, resulting in serious injury of the at fault driver.
- A vehicle ran over a wooden post in the middle of the roadway, causing it to flip up, strike the front left driver's window, and causing pieces of glass to fly into the driver's eyes, causing severe injury to the driver.

Many crashes were also related to vehicles drifting over the roadway centerline or being run off the road/into the guardrail while attempting to avoid another vehicle or obstacle. Of these crash types, some resulted in injury while others did not. Also, two narratives mention vehicles losing control after driving through standing water.

3.0 Development of Future Traffic

Future year design hour traffic volumes were developed using the Standard K and D-factors used in the existing conditions analysis. The same annual growth rate of 3.0% used to develop the existing year (2018) design hour turning movement volumes was used in the development of design year AADT's. The FDOT's TURNS5 spreadsheet was used to develop the turning movement volumes for the AM and PM peak hours and can be found in Appendix F. In order to quantify the benefit of the proposed improvements, both nobuild and build conditions were assessed using the same forecasted traffic volume, as was also assumed for the SR 70 and CR 29 intersection in the SR 70 Western Study. The future design hour traffic volumes and AADT's for the opening year (2025), the interim year (2035), and the design year (2045) can be found in Figure 4.

Figure 4 - Future Design Traffic Volumes

4.0 Future Conditions

4.1 NO-BUILD OPERATIONAL ANALYSES

Intersection and arterial operational analysis was conducted along SR 70 from CR 29 to Lonesome Island Road for the opening year (2025), interim year (2035), and design year (2045) under No-Build conditions. HCS7 was utilized to conduct HCM6E two-way stop control analysis and directional two-lane highway segment analysis, and can be found in Appendix G. The results of the future year intersection analyses at SR 70 and CR 29 under No-Build conditions are shown in Table 11. The results of the analyses indicate that the SR 70 and CR 29 intersection is expected to meet the FDOT LOS standard C for non-urbanized areas under No-Build conditions through the design year (2045).

Table 11 - Future Year No-Build Intersection Analyses

Approach	Movement	AM Peak Hour		PM Peak Hour	
		Delay (s/veh)	LOS	Delay (s/veh)	LOS
Opening Year (2025)					
Eastbound	Left Turn	7.9	A	8.2	A
	Through	0.0	A	0.0	A
	Total	0.7	A	0.7	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	12.0	B	12.2	B
Interim Year (2035)					
Eastbound	Left Turn	8.1	A	8.4	A
	Through	0.0	A	0.0	A
	Total	0.8	A	0.8	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	14.1	B	13.9	B
Design Year (2045)					
Eastbound	Left Turn	8.2	A	8.7	A
	Through	0.0	A	0.0	A
	Total	1.0	A	1.0	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	16.7	C	16.0	C

The results of the future year arterial analyses along SR 70 from CR 29 to Lonesome Island Road under No-Build conditions are shown in Table 12. The results of the analyses indicate that the SR 70 corridor from CR 29 to Lonesome Island Road is expected to meet the FDOT LOS standard C for non-urbanized areas under No-Build conditions through the design year (2045).

Table 12 - Future Year No-Build Arterial Analysis

Direction	AM Peak Hour		PM Peak Hour			
	Volume to Capacity (v/c)	LOS	Volume to Capacity (v/c)	LOS		
	Opening Year (2025)					
Eastbound	0.21	B	0.14	B		
Westbound	0.14	B	0.21	B		
Interim Year (2035)						
Eastbound	0.25	B	0.18	B		
Westbound	0.18	B	0.25	B		
Design Year (2045)	B	0.21	B			
Eastbound	0.30	B	B			
Westbound	0.21	B	0.30			

4.2 ALTERNATIVE DEVELOPMENT

Based on the results of the No-Build operational analyses, SR 70 from CR 29 to Lonesome Island Road is expected to meet the FDOT LOS standard C for non-urbanized areas through the design year (2045) and does not require any operational improvements. However, capacity improvements are proposed to widen SR 70 from CR 29 to Lonesome Island Road from a two-lane undivided facility to a four-lane divided roadway. The proposed improvements along SR 70 from CR 29 to Lonesome Island Road are shown in Figure 5.

Figure 5 - Build Alternative

This widening is proposed as an initiative to improve operations along SR 70 during emergency evacuations. Highlands County is part of the Rural Area of Critical Economic Concern (RACEC) or Rural Area of Opportunity program defined by the state of Florida legislature to encourage and facilitate the location and expansion of major economic development projects of significant scale in such rural communities.

Furthermore, the Highway Safety Manual (HSM) predictive method was used to analyze SR 70 as a twolane, undivided rural segment for the No-Build condition and as a multi-lane, divided rural segment for the Build condition. The predicted crash frequency by crash severity type for each condition in the design year (2045) is summarized in Table 13. An overall 60 percent decrease in crash frequency is anticipated with the implementation of the build condition. The predicted crash frequency calculations for the NoBuild and Build conditions can be found in Appendix \mathbf{H} and Appendix I, respectively.

Table 13 - Design Year (2045) Predicted Crash Frequency

Severity	No-Build Crash Frequency	Build Crash Frequency	Percent Difference
Fatal and Injury	3.83	2.50	-35%
Property Damage Only	8.11	2.23	-73%
Total	$\mathbf{1 1 . 9 4}$	$\mathbf{4 . 7 3}$	-60%

4.3 BUILD OPERATIONAL ANALYSES

Intersection and arterial operational analysis was conducted along SR 70 from CR 29 to Lonesome Island Road for the opening year (2025), interim year (2035), and design year (2045) under the proposed Build conditions. HCS7 was utilized to conduct HCM6E two-way stop control analysis and directional two-lane highway segment analysis, and can be found in Appendix J. The results of the future year intersection analyses at SR 70 and CR 29 under the proposed Build conditions are shown in Table 14. The results of the analyses indicate that the SR 70 and CR 29 intersection is expected to meet the FDOT LOS standard C for non-urbanized areas under the proposed Build conditions through the design year (2045).

The results of the future year arterial analyses along SR 70 from CR 29 to Lonesome Island Road under the proposed Build conditions are shown in Table 15. The results of the analyses indicate that the SR 70 corridor from CR 29 to Lonesome island Road is expected to meet the FDOT LOS standard C for nonurbanized areas under the proposed Build conditions through the design year (2045).

4.4 NOISE ANALYSIS

The existing year (2018), opening year (2025), and design year (2045) AADT and design traffic factor information for the No-Build and Build conditions for Noise Analysis, as per the FDOT Noise Policy (Part 2, Chapter 17 of the PD\&E Manual), can be found in Appendix K.

4.5 AIR QUALITY ANALYSIS

The opening year (2025) and design year (2045) traffic data for No-Build and Build conditions for the intersection with the greatest peak hour volumes for Air Quality Analysis, as per the FDOT Air Quality Policy (Part 2, Chapter 16 of the PD\&E Manual), can be found in Appendix L.

Table 14 - Future Year Build Intersection Analyses

Approach	Movement	AM Peak Hour		PM Peak Hour	
		Delay (s/veh)	LOS	Delay (s/veh)	LOS
Opening Year (2025)					
Eastbound	Left Turn	7.9	A	8.2	A
	Through	0.0	A	0.0	A
	Total	0.5	A	0.6	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	10.5	B	10.8	B
Interim Year (2035)					
Eastbound	Left Turn	8.1	A	8.5	A
	Through	0.0	A	0.0	A
	Total	0.6	A	0.6	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	11.4	B	11.6	B
Design Year (2045)					
Eastbound	Left Turn	8.3	A	8.7	A
	Through	0.0	A	0.0	A
	Total	0.7	A	0.7	A
Westbound	Total	0.0	A	0.0	A
Southbound	Total	12.3	B	12.5	B

Table 15 - Future Year Build Arterial Analysis

Direction	AM Peak Hour		PM Peak Hour		
	Volume to Capacity (v/c)	LOS	Volume to Capacity (v/c)	LOS	
	Opening Year (2025)				
Eastbound	0.09	A	0.06	A	
Westbound	0.06	A	0.09	A	
Interim Year (2035)					
Eastbound	0.11	A	0.08	A	
Westbound	0.08	A	0.11	A	
Design Year (2045)	A	0.09	A		
Eastbound	0.13	A			
Westbound	0.09	A	0.13	A	

5.0 Summary

The FDOT is conducting a roadway capacity improvement project to widen SR 70 from CR 29 to Lonesome Island Road from a two-lane undivided facility to a four-lane divided roadway. A DTTM was prepared to compare the SR 70 Western Study, completed in March 2017, with updated traffic data and to analyze the traffic operations along SR 70 with the proposed improvements. Based on the operational analyses of the existing and future traffic conditions documented in this DTTM, the following conclusions have been drawn:

- Within the study area, SR 70 has been identified as a critical facility for hurricane evacuations.
- Currently, SR 70 from CR 29 to Lonesome Island Road operates at a LOS B during the AM and PM peak hours.
- Review of recent crash data revealed that hitting an animal was the most common crash type, followed by hitting the guardrail.
- From 2013 to 2017, there were two fatal crashes, accounting for 5.4% of the total crashes. One fatality involved a bicyclist and the other occurred as a result of the driver running off the road.
- The SR 70 study corridor contains a crash rate 1.604 times that of the statewide average for similar facilities.
- If no improvements are implemented, SR 70 from CR 29 to Lonesome Island Road is projected to continue to operate at a LOS B in the design year (2045), while CR 29 will operate slightly worse as it approaches SR 70 at LOS C.
- The proposed widening of SR 70 from CR 29 to Lonesome Island Road, along with the incorporation of a median, has the potential to reduce fatal and injury crashes by 35\%, property damage crashes by 73%, and all crashes by 60%.
- The proposed Build condition is anticipated to operate at a LOS A through the design year (2045), with LOS B operation along CR 29.

Design Traffic Technical Memorandum

DRAFT FINAL

State Road 70 PD\&E Study

From West of Placid Lakes Boulevard/S. Jefferson Avenue to East of County Road 29
Highlands County, Florida

Prepared for:
Florida Department of Transportation
District One
District Environmental Management Office
801 North Broadway
Bartow, Florida 33831-1249
March 2017

Design Traffic Technical Memorandum

DRAFT FINAL

State Road 70 PD\&E Study

From West of Placid Lakes Boulevard/S. Jefferson Avenue to East of County Road 29
Highlands County, Florida

Submitted by:
Kisinger Campo and Associates
in association with
H.W. Lochner, Inc.

March 2017

Table of Contents

Executive Summary 1
Project Description 1
Purpose 1
Conclusion 1
Introduction 2
Project Description 2
Purpose 2
Vicinity of the Study Corridor 2
Existing (2015) Conditions 5
Roadway Characteristics 5
Traffic Factors 6
Traffic Volumes 7
Existing (2015) Intersection Level of Service Analysis 9
Safety Considerations
Data Collection
Segments and Spots
Crash History1010
10
Crash Location Density and Crash Types10
10
Future Conditions Analysis 14
Traffic Forecasting Parameters
Development of Future Traffic Volumes (No-Build)
Development of Future Traffic Volumes (Build)
Summary of Findings
Conclusion
Tables
Table 2-1: Summary of Peak Hour Directional Factor (D)6
Table 2-2a:Truck Percentages Summary - (T_{24}) and DHT 6
Table 2-2b:Truck Percentages Summary - DHT 6
Table 2-3:Recommended Peak Hour Factors 7
Table 2-4:Summary of Existing AADTs 7
Table 2-5: LOS and Delay (2015) 9
Table 2-6: Arterial LOS(2015) 9
Table 3-1: Crash History Overview 10
Table 3-2: Crash Ratio Summary 12
Table 4-1: LOS and Delay for Future Years (No Build)22
Table 4-2: No Build Arterial LOS 22
Table 4-3: LOS and Delay for Future Years (Build) 23Table 4-4: Build Arterial LOS (Year 2040)
23
Figure 1-1: Project Location Map 3
Figure 1-2: Project Vicinity - Number of Lanes and Signalized Intersection Locations 4
Figure 2-1: SR 70 Lane Geometry 5
Figure 2-2: Annual Average Daily Traffic (AADT) Volumes and Turning Movement Volume Count Locations 8
Figure 2-2a: Existing (2015) Turning Movement Volumes 8
Figure 3-1: Crash Locations Map 11
Figure 3-2: One Vehicle \& Multi-Vehicle Crashes by Type (2009-2013) 12
Figure 3-3: Crash Ratio Chart 12
Figure 3-4: Lighting Conditions, Time of Day and Approach Speeds 13
Figure 4-1: Annual Average Daily Traffic Volumes (2020) 16
Figure 4-1a: Turning Movement Volumes (2020 No Build) 16
Figure 4-2: Annual Average Daily Traffic Volumes (2030) 17
Figure 4-2a: Turning Movement Volumes (2030 No Build) 17
Figure 4-3: Annual Average Daily Traffic Volumes (2040) 18
Figure 4-3a: Turning Movement Volumes (2040 No Build) 18
Figure 4-4a: Proposed Median Opening Locations (1 of 2) 19
Figure 4-4b: Proposed Median Opening Locations (2 of 2) 20
Figure 4-5: 2040 Build Turning Movement Volumes (AM and PM) 21

Executive Summary

The Florida Department of Transportation (FDOT) is conducting a Project Development and Environment (PD\&E) Study to improve and preserve mobility along the SR 70 study corridor. The project is located within Highlands County, Florida.

Project Description

This roadway capacity improvement project entails widening SR 70 from Jefferson Avenue to CR 29 in Highlands County from a two-lane undivided facility to a four-lane divided roadway. SR 70 is a principal arterial and the primary east-west highway for the Lake Placid/southern Highlands County area, providing regional access to employment centers, agricultural lands, and residential areas across the state. SR 70 is a designated hurricane evacuation route and a part of the Strategic Intermodal System (SIS) highway network. The project is approximately 7 miles in length. Existing right-of-way along the corridor ranges from approximately 80 feet between Jefferson Avenue to east of Monroe Street, approximately 200 feet east of Monroe Street to east of L7 Ranch Road, and approximately 100 feet east of L7 Ranch Road to CR 29. Additional right-of-way will likely be needed to accommodate the proposed widening, particularly at the eastern and western ends of the corridor; however, the specific right-of-way requirements will be determined during the PD\&E Study.

The widening of SR 70 is identified in the Capital Improvement Element of the Highlands County 2030 Comprehensive Plan and adopted in the Heartland 2040 Long Range Transportation Plan and Heartland Draft Transportation Improvement Plan. The PD\&E study for this project is also identified in the State Transportation Improvement Program and the 2024-2040 SIS Long Range Cost Feasible Plan [including the First Five-Year Plan (FY 2014/2015 - FY 2018/2019)]. The project is additionally identified in the FY 2015 - FY 2019 FDOT Work Program with $\$ 1.7$ million programmed in FY 2015 for the PD\&E Study. Additionally, the widening of SR 70 from Jefferson Avenue to CR 29 is classified as a high priority investment in the Florida Freight Mobility and Trade Plan: Investment Element - Project list. Planning consistency will be achieved prior to submittal of the final environmental document to the Office of Environmental Management (OEM) and issuance of Location and Design Concept Acceptance (LDCA). Further, SR 70 is included as a four-lane facility throughout all of Highlands County in the Florida Department of Transportation's 2035 Strategic Intermodal System Cost Feasible Plan.

Purpose

The purpose of this project is to improve operational conditions for emergency evacuations along the SR 70 corridor from Jefferson Avenue to CR 29. The Florida Division of Emergency Management's Statewide Regional Evacuation Study Program determined the segment of SR 70 between US 27 to east of the end project limit at CR 29 to be a critical segment with the longest vehicle queues among all roadways in the Central Florida region during emergency evacuations.

Conclusion

Crash analysis along the study corridor showed that more than one-third of the crashes were one vehicle crashes (24 crashes out of 63 total crashes). These crashes involved vehicles crashing into a fixed object, or animal or running into a ditch as a major contributor. Also, it was noted that excessive speeds along the study corridor might have also contributed for crash rates being higher than statewide average crash rates along similar corridors. Implementation of design components to reduce travel speeds and make travelers aware that they are approaching a signalized intersection near US 27 can be achieved by installing signal warning signs or beacons. Widening the study corridor to four lanes should also be considered as a high percentage (14% during peak hour) of truck traffic utilizes this section of the SR 70 corridor.

Hurricane evacuation transportation analysis shows that widening the study corridor to four lanes will reduce the queues along the study corridor from east of US 27 to CR 29 which were observed under No Build conditions.

Intersection Analysis - Design hour traffic evaluation under existing conditions and future Design year (2040) No Build conditions showed that all of the intersections along the SR 70 study corridor operate under acceptable LOS conditions. A Build alternative analysis was also conducted for the Design year (2040) which also shows that the intersections along the SR 70 study corridor will operate under acceptable LOS conditions.

Arterial Analysis - Evaluation of segment LOS conditions showed that under existing (2015) conditions, the segment of SR 70 from Old SR 8 (North) to US 27 operates at LOS D which is worse than acceptable LOS conditions (LOS C). Under future No Build conditions, the segments along SR 70 from Old SR 8 (North) to CR 29 operate at LOS D conditions. This indicates that the study corridor will require capacity improvements to make the corridor operate at acceptable LOS conditions (LOS C). The Build conditions segment analysis showed that the proposed lane addition (2 to 4 lanes) will make the corridor operate at LOS A conditions.

The crash and hurricane evacuation analyses also indicate that a widening of the corridor will be needed. Highlands County is part of the Rural Area of Critical Economic Concern (RACEC) or Rural Area of Opportunity program defined by the state of Florida legislature to encourage and facilitate the location and expansion of major economic development projects of significant scale in such rural communities.

Therefore, widening the study corridor to four lanes should be considered as an alternative after carefully evaluating other PD\&E elements.

Introduction

The Florida Department of Transportation (FDOT) is conducting a Project Development and Environment (PD\&E) Study to improve and preserve mobility along the SR 70 study corridor. The project is located within Highlands County, Florida.

Project Description

This roadway capacity improvement project entails widening SR 70 from Jefferson Avenue to CR 29 in Highlands County from a two-lane undivided facility to a four-lane divided roadway. SR 70 is a principal arterial and the primary east-west highway for the Lake Placid/southern Highlands County area, providing regional access to employment centers, agricultural lands, and residential areas across the state. SR 70 is a designated hurricane evacuation route and a part of the SIS highway network. The project is approximately 7 miles in length. Existing right-ofway along the corridor ranges from approximately 80 feet between Jefferson Avenue to east of Monroe Street, approximately 200 feet east of Monroe Street to east of L7 Ranch Road, and approximately 100 feet east of L7 Ranch Road to CR 29. Additional right-of-way will likely be needed to accommodate the proposed widening, particularly at the eastern and western ends of the corridor; however, the specific right-ofway requirements will be determined during the PD\&E Study.

The widening of SR 70 is identified in the Capital Improvement Element of the Highlands County 2030 Comprehensive Plan and adopted in the Heartland 2040 Long Range Transportation Plan and Heartland Draft Transportation Improvement Plan. The PD\&E study for this project is also identified in the State Transportation Improvement Program and the 2024-2040 SIS Long Range Cost Feasible Plan [including the First Five-Year Plan (FY 2014/2015 - FY 2018/2019)]. The project is additionally identified in the FY 2015 - FY 2019 FDOT Work Program with $\$ 1.7$ million programmed in FY 2015 for the PD\&E Study. Additionally, the widening of SR 70 from Jefferson Avenue to CR 29 is classified as a high priority investment in the Florida Freight Mobility and Trade Plan: Investment Element - Project list. Planning consistency will be achieved prior to submittal of the final environmental document to the Office of Environmental Management (OEM) and issuance of Location and Design Concept Acceptance (LDCA). Further, SR 70 is included as a four-lane facility throughout all of Highlands County in the Florida Department of Transportation's 2035 Strategic Intermodal System Cost Feasible Plan.

Purpose

The purpose of this project is to improve operational conditions for emergency evacuations along the SR 70 corridor from Jefferson Avenue to CR 29. The Florida Division of Emergency Management's Statewide Regional Evacuation Study Program determined the segment of SR 70 between US 27 to east of the end project limit at CR 29 to be a critical segment with the longest vehicle queues among all roadways in the Central Florida region during emergency evacuations. Appendix A presents the excerpts from Florida Statewide Regional Evacuation Study Program - Evacuation Transportation Analysis, Volume 4-7, Florida Division of Emergency Management, Central Florida Regional Planning Council, September 2010.

Vicinity of the Study Corridor

The number of roadway lanes and signalized intersection locations in the vicinity of the study corridor are shown in Figure 1-2. The only signalized intersection along SR 70 within the project limits is located at the US 27 intersection. The next closest signalized intersections are approximately 30 miles due east and west of the US 27 intersection. A flashing beacon is located at the intersection of CR 721 , which is approximately 15 miles due east of the US 27 intersection.

Introduction

Figure 1-1: Project Location Map

Existing (2015) Conditions
Roadway Characteristics
The SR 70 study corridor is a two-lane roadway throughout the project limits, which spans from west of Placid Lakes Boulevard/S. Jefferson Avenue to east of CR 29, a length of approximately 7 miles. It is a Strategic Intermodal System (SIS) Highway facility, serves as part of an emergency evacuation route network, and facilitates the east-west movement of freight and people.

The only major intersection within the project limits is the SR 70 and US 27 intersection. This is also the only signalized intersection within the project limits.

Typical Section
The existing typical section for SR 70 is a two-lane undivided rural roadway with one 12 -foot lane in each direction and open ditches. In general, the posted speed limit along the study corridor is 60 miles per hour (MPH). Reduced speed limit signs are in place within the proximity of US 27 signalized intersection. The posted speed limit transitions from 60 MPH to 55 MPH to 45 MPH and back to 60 MPH from west of Old SR 8 (North) to west of Highlands Boulevard. Figure 2-1 illustrates the existing (2015) intersection lane geometry for SR 70 throughout the study limits.

Figure 2-1: SR 70 Lane Geometry

Existing (2015) Conditions

Traffic Factors

The SR 70 study corridor is located in a rural area; therefore, a standard K factor of 9.5% was used as recommended in the FDOT Project Traffic Forecasting Handbook (2014).

A three year historical average (2012-2014) from 2014 Florida Traffic Information (FTI) was used to calculate the peak hour Directional Factor (D). The D was also calculated using the tube counts (both 24 hour and 72 hour) collected for this study. Table 2-1 shows a summary of the peak hour D calculations. A peak directional factor (D) of 58.83% was used for the entirety of the SR 70 corridor - this factor is within the suggested D factor range for rural arterial in the FDOT Project Traffic Forecasting Handbook (51.1\% to 79.6\%).

Table 2-1: Summary of Peak Hour Directional Factor (D)

Location	2014 Florida Traffic Information (FTI)			Tube Counts
	2012	2013	2014	2015
SR 70 west of Jefferson Avenue	58.00\%	59.10\%	59.40\%	56.45\%
SR 70 west of US 27	58.00\%	59.10\%	59.40\%	52.58\%
SR 70 east of US 27	58.00\%	59.10\%	59.40\%	55.88\%
SR 70 east of CR 29	N/A	N/A	N/A	55.83\%
Yearly Average (D)	58.00\%	59.10\%	59.40\%	55.19\%
Average (D)		58.83\%		55.19\%

Note: Average D_{30} from FTI and tube counts were kept separate for calculating overall average
The Design Hour Truck (DHT) percentage was calculated from the average of the available Daily Truck percentage (T_{24}) from 2014 FTI. DHT was also calculated from turning movement volume count data collected for this study. Table 2-2a and Table2-2b shows the T_{24} and DHT (which is assumed as half of T_{24}) calculations from 2014 FTI data and DHT calculated from field collected turning movement count data for this study. A DHT percentage of 14.0 percent was used along SR 70 and at US 27 north and south of SR 70 . An average of AM and PM peak hour truck percentages from the turning movement count data (collected for this study) was calculated. This showed that all the cross streets south of SR 70 carried approximately 2 percent truck traffic and all the cross streets north of SR 70 carried approximately 5 percent truck traffic. Therefore, a DHT percentage of 2.0 percent was used at all other cross streets south of SR 70 and a DHT percentage of 5.0 percent was used at all other cross streets north of SR 70.

Table 2-2a:Truck Percentages Summary - (T_{24}) and DHT

Location	2012	2013	2014
SR 70 west of Jefferson Avenue	29.20%	29.20%	29.20%
SR 70 west of US 27	28.30%	27.60%	27.60%
SR 70 east of US 27	21.10%	18.10%	18.10%
US 27 north of SR 70	30.20%	29.00%	29.00%
US 27 south of SR 70	30.30%	30.80%	30.40%
Average (T $\mathbf{2 4}$)	$\mathbf{2 7 . 8 2 \%}$	$\mathbf{2 6 . 9 4 \%}$	$\mathbf{2 6 . 8 6 \%}$
Overall Average (T $\mathbf{2 4}^{24}$)	$\mathbf{2 7 . 2 1 \%}$		
DHT	$\mathbf{1 4 \%}$		

Source: 2014 FTI

Table 2-2b:Truck Percentages Summary - DHT

Location	2015 DHT
SR 70	14%
US 27 north and south of SR 70	14%
Cross Streets (south of SR 70)	2%
Cross Streets (north of SR 70)	5%

Table 2-3 shows the recommended peak hour factors for this study.

Table 2-3:Recommended Peak Hour Factors

Factors	Standard K	D	DHT
Recommended	9.5%	58.83%	14.0%

Note: A DHT of 2% \& 5% was used for all the cross streets south and north of SR 70 Study Corridor, respectively. A DHT of 14\% was used for US 27 north and south of SR 70 Study Corridor.

Traffic Volumes

Traffic data collected for this project includes 24 -hour bi-directional approach counts, 72 -hour vehicle classification counts, and 2 hour turning movement volume counts (TMCs). All counts were collected in June/July of 2015. Table 2-4 shows a summary of existing AADTs, Figure 2-2 shows locations where counts were collected and 2015 Average Annual Daily Traffic (AADT) and Figure 2-2a shows existing (2015) turning movement volumes. The existing year (2015) design hour volumes were calculated using the formula: AADT x standard $\mathrm{K} \times \mathrm{D}$. These design hour volumes were then converted to turning movement volumes by applying the existing unbalanced turn percentages at each study intersection. The resulting turn volumes were then balanced between adjacent intersections.

Appendix B shows the raw traffic volumes collected, traffic factor calculations, seasonally adjusted AADTs and TMCs and TMCs balanced to adjacent intersection locations for the 2015 existing year.

Table 2-4:Summary of Existing AADTs

Count Location Site	Count Type	Seasonal Factor	Axle Factor	$\overline{N B / E B}$ Approach	$\overline{S B / W B}$ Approach	2015 AADT
SR 70 west of Placid Lakes Boulevard	24 Hour Class	1.10	1.00	1,682	1,582	3,600
SR 70 west of US 27	72 Hour Class	1.04	1.00	2,480	2,274	4,900
SR 70 east of US 27	72 Hour Class	1.04	1.00	2,096	1,927	4,200
SR 70 east of CR 29	24 Hour Class	1.08	1.00	2,089	2,024	4,400
Placid Lakes Boulevard north of SR 70	24 Hour Class	1.10	1.00	328	310	700
Park Land Drive south of SR 70	24 Hour Class	1.10	1.00	116	107	200
Placid View Drive north of SR 70	24 Hour Class	1.10	1.00	212	184	400
Old SR 8 (north) north of SR 70	24 Hour Class	1.07	1.00	455	487	1,000
Old SR 8 (south) south of SR 70*	24 Hour Class	1.07	1.00	241	219	460
Distribution Boulevard south of SR 70	24 Hour Class	1.08	1.00	59	25	100
Glades Electric north of SR 70	24 Hour Class	1.07	1.00	94	49	200
Andersons south of SR 70	24 Hour Class	1.07	1.00	63	69	100
US 27 north of SR 70	72 Hour Class	1.04	1.00	3,661	3,465	7,400
US 27 south of SR 70**	72 Hour Class	1.04	1.00	3,622	3,548	7,200
Myers Road north of SR 70	24 Hour Class	1.08	1.00	17	9	30
Placid Pine Drive south of SR 70	24 Hour Class	1.07	1.00	62	29	100
North Edge Street north of SR 70	24 Hour Class	1.08	1.00	31	30	100
Ekhoff Lane north of SR 70	24 Hour Class	1.08	1.00	10	18	30
Broward Avenue north of SR 70	24 Hour Class	1.08	1.00	102	81	200
Highlands Boulevard north of SR 70	24 Hour Class	1.08	1.00	172	177	400
Citrus Boulevard north of SR 70	24 Hour Class	1.08	1.00	14	35	100
Bear Road north of SR 70	24 Hour Class	1.08	1.00	98	83	200
CR 29 north of SR 70	24 Hour Class	1.08	1.00	227	212	500

Notes:

*2014 counts from the FTI site projected to year 2015 was used.
**2014 counts from the telemetered FTI site was used.

Existing (2015) Conditions

Existing (2015) Intersection Level of Service Analysis

Level of Service Standards

On April 18, 2012, a FDOT memorandum was issued that states the LOS standard for all FDOT facilities is LOS D within urbanized areas and LOS C in non-urbanized areas. Based on 2010 census data, SR 70 does not pass through urbanized areas. For this reason, the minimum LOS standard for the entire SR 70 study area under existing conditions is LOS C. The FDOT memorandum is shown in Appendix C.

Existing Conditions Analysis

Intersection level of service for existing (2015) conditions was estimated using Synchro (Version 9). AM peak hour and PM peak hour analyses were performed under existing conditions. The analysis results for the intersection within the project limits are summarized in Table 2-5 (LOS and Delay). Segment analysis was conducted using HighPlan and the results are summarized in Table 2-6.

The Synchro outputs for intersection analysis and associated queues and HighPlan outputs are included in Appendix D.
Table 2-5: LOS and Delay (2015)

SR 70 Intersection Existing (2015) AM Peak Hour PM Peak Hour Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
	11.5	B	10.6	B
	11.8	B	9.9	A
Old SR 8 (North)*	12.2	B	10.2	B
Old SR 8 (South)*	10.8	B	10.5	B
Distribution Blvd*	10.4	B	10.4	B
Chevron/Circle K Driveways*	12.1	B	10.7	B
US 27	23.5	C	24.3	C
Placid Pine Drive*	11.4	B	9.8	A
Broward Ave*	9.5	A	9.6	A
Highlands Blvd*	11.7	B	10.1	B
Citrus Blvd*	9.4	A	10.1	B
CR 29*	11.2	B	10.8	B

* Unsignalized intersection, worst approach delay used.

Table 2-6: Arterial LOS(2015)

Corridor	From	To	Segment Length (Miles)	Percentage Time Spent Following (Sec)	Average Speed (mph)	LOS
SR 70	S. Jefferson Avenue/ Placid Lakes Boulevard	Old SR 8 (North)	3.2	51.2	58.7	C
	Old SR 8 (North)	US 27	1.1	68.5	46.4	D
	US 27	Highlands Boulevard	1.3	65.6	46.7	D
	Highlands Boulevard	CR 29	1.5	64.9	56.7	C

Safety Considerations

Data Collection

Crash data within the project limits was collected for the years 2009 through 2013. The crash data was obtained from the FDOT Crash Analysis Report System (CARS) database, which includes information regarding the number and types of crashes, the locations of the crashes, and the number of resulting injuries and fatalities. The FDOT CARS database contains only crashes reported to state or local law enforcement and does not include any unreported minor crashes.

Segments and Spots

Crash analyses were conducted for the years 2009 through 2013, the five most recent years of data at the time of this analysis. Segment crash analysis for State Road 70 was broken down into the following segments:

- Segment 1: State Road 70 from West of S. Jefferson Avenue to West of US 27 (MP 10.170-14.443)
- Segment 2: State Road 70 from East of US 27 to CR 29 (MP 14.537-17.302)

The spot analysis for this study included only the signalized intersection:

- Spot 1: SR 70 at US 27 (MP 14.443-14.537)

Crash History

The crash data collected within the project limits showed 63 crashes for the five-year study period. These 63 crashes involved 1 fatality and 38 injuries. More detailed information on the crashes, including yearly totals and averages, are provided in Table 3-1.

Table 3-1: Crash History Overview

Crash Summary	2009	2010	2011	2012	2013	Total	Average
Fatal Crashes	0	0	1	0	0	$\mathbf{1}$	$\mathbf{0}$
Total Fatalities	0	0	1	0	0	$\mathbf{1}$	0
Injury Crashes	8	3	4	1	5	$\mathbf{2 1}$	$\mathbf{4}$
Total Injuries	12	3	13	1	9	$\mathbf{3 8}$	$\mathbf{8}$
Property Damage Only Crashes	12	10	5	5	9	41	$\mathbf{8}$
Crash Totals	$\mathbf{2 0}$	$\mathbf{1 3}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{1 4}$	$\mathbf{6 3}$	$\mathbf{1 3}$

Crash Location Density and Crash Types

Based on crash location density mapping, as shown in Figure 3-1, a high number of crashes (23 crashes) are clustered at the SR 70 at US 27 signalized intersection when compared to any other locations along the study corridor. Crash density mapping also shows clusters of crashes near Old State Road 8 (7 crashes) and Placid Pine Drive (4 crashes). An examination of crash types along the segments show that a majority of crashes were either because of colliding with an animal or with fixed objects. An examination of spot crashes shows that a majority of crashes were rear end crashes.

As a majority of segment crashes were because of the vehicle colliding with an animal or fixed object, an examination of number of vehicles involved in the crash was performed. This showed that more than one-third of the crashes (24 crashes) were 1 vehicle crashes. Figure 3-2 shows one vehicle and multi-vehicle crash type plots.

Safety Considerations

Figure 3-2: One Vehicle \& Multi-Vehicle Crashes by Type (2009-2013)

Crash Ratios

Crash ratios are calculated by dividing the actual crash rate of a spot or segment by the statewide average crash rate for the same type of roadway facility. Crash rates for spots represent the number of crashes per million vehicles entering an intersection and for segments represent the number of crashes per million vehicle miles traveled. Crash ratios larger than 1.00 indicate locations where the actual crash rate exceeds the statewide average crash rate, and therefore signify locations that should be investigated for potential safety issues. The values used to calculate these crash ratios are provided in Appendix E. The five-year average crash ratios for the study area are shown in Table 3-2 and on Figure 3-3. Crash ratios larger than 1.00 are indicated in bold italic text in Table 3-2.

As summarized in Table 3-2, the spot and segment crash ratios indicate that, on average, the crashes along the project corridor are higher than that of the statewide average for similar roadways.

Table 3-2: Crash Ratio Summary

Figure 3-3: Crash Ratio Chart

Safety Considerations
Conclusion
Crash factors such as lighting conditions, crashes by time of day and approach speeds for the SR 70 at US 27 intersection were examined to determine the reason for crash rates being higher than the statewide average. The lighting conditions, crashes by time of day and approach speeds plot from the 72 hour count data are shown in Figure 3-4. The lighting condition along the roadway is a concern. However, it does not appear to be a major crash factor. The time of day plot showed that the crashes were higher between 2:00 PM and 4:00 PM, but not during dark conditions. Speed plots showed that the traffic is traveling at speeds that are higher than posted speeds along SR 70 (posted speed 55 MPH) and US 27 (posted speed 45 MPH). The excessive traveling speeds might be a reason for crash rates higher than the statewide average. Implementing design components to reduce travel speeds and make travelers aware that they are approaching the signalized intersection at US 27 could be achieved by installing signal warning signs or beacons. These signs could reduce speed related crashes at the US 27 intersection.

Figure 3-4: Lighting Conditions, Time of Day and Approach Speeds

Future Conditions Analysis

Traffic Forecasting Parameters

The traffic factors used for future volumes development are listed below:

- The standard K factor for rural areas, which is 9.5 percent
- The D factor obtained from averaging the available FTI D factors in the study area, which is 58.83 percent
- A design hour truck percentage of 14 percent

These traffic factors are the same as the traffic factors used for existing (2015) conditions as no major changes in land use conditions were forecasted along the vicinity of the study corridor.

Development of Future Traffic Volumes (No-Build)

Future year traffic volume were developed after examining the following data sources:

- Historical Traffic
- Travel Demand Model Forecasts
- Population Projections/Estimates

Historical Traffic - An examination of historical traffic trend showed that the AADT volumes along the SR 70 study corridor and US 27 showed minimal to no growth over the past six years (2009-2014).

Travel Demand Model Forecasts - Highlands County Travel Demand Model with a validation year of 2006 and year 2035 needs model was also examined. The model forecasts showed yearly growth rate of 11% to 13% along SR 70 corridor east of US 27 and a 4% growth along SR 70 corridor west of US 27 . However, the high yearly growth rate east of US 27 along SR 70 study corridor was determined to be an anomaly after examining the external station data from the neighboring county travel models.

Population Projections/Estimates - Population projections from Bureau of Economic and Business Research (BEBR) were also examined. BEBR Bulletin 175, June 2016 showed a population estimate of 100,748 for the year 2015 and a population projection of 120,227 for the year 2040. The population grows at a rate of 1% per year based on 2015 estimate and 2040 projection.

A summary of projections is listed below:

- Historical traffic data showed minimum to no growth.
- Travel demand model forecasts showed a significant growth because of the underlying socioeconomic data which was projected for a base year of 2006 and future year of 2035. These projections were made before the economic downturn.
- The latest BEBR Population Projections/Estimates showed that population of Highlands County will have an annual growth of 1.0 percent.

Based on the above observations, plus keeping in mind the continuity of SR 70 corridor from the west coast to the east coast of Florida, a significant portion of regional trips will traverse the study corridor. Therefore, it was determined that an annual growth rate of 2.0 percent should be used for future traffic volume development.

Appendix F presents the historical traffic trends analyses, growth rates determination memo, BEBR Bulletin 175, June 2016 - Highlands County population projections and raw 2040 turning movement volume calculations.

The future year design hour volumes were calculated using the formula: AADT x standard $K \times D$. These design hour volumes were converted to turning movement volumes by applying the existing unbalanced turn percentages at each study intersection. These unbalanced turning movement volumes were then balanced/smoothed between adjacent intersections prior to performing operational analyses.

Figures 4-1 and Figure 4-1a shows the 2020 No-Build Condition AADT, AM and PM peak hour turning movement volumes along the study corridor.

Figures 4-2 and Figure 4-2a shows the 2030 No-Build Condition AADT, AM and PM peak hour turning movement volumes along the study corridor.

Figures 4-3 and Figure 4-3a shows the 2040 No-Build Condition AADT, AM and PM peak hour turning movement volumes along the study corridor.

Future Conditions Analysis
The calculated turning movement volumes and adjusted/balanced intersection turning movement volumes for the year 2040 are presented in Appendix G in stick figure format. Year 2020 and 2030 design hour volumes were calculated via weighted averages of existing (2015) and 2040 volumes, and are also presented in Appendix G.

Development of Future Traffic Volumes (Build)
The proposed Build condition for SR 70 is a four-lane divided facility with median openings. The proposed median opening locations are shown in Figure 4-4a and Figure 4-4b. The study corridor will be redesignated as Access Class 3 facility under the proposed Build condition and will adhere to minimum spacing requirements included in Florida Administrative Code (F.A.C) Chapter 14-97. The Build condition turning movement volumes were developed by redistributing No-Build turning movement volumes and proposed median opening locations.

Figures 4-5 shows the 2040 Build condition AM and PM peak hour turning movement volumes along the study corridor.

(Wd pue WV) saunion fuamanow suluun plung otoz :s-b anns!
Future Conditions Analysis

Future Conditions Analysis

Future Traffic Conditions

Future traffic conditions were analyzed under No Build and Build conditions. The No Build alternative analysis was conducted for the Opening year (2020), Interim year (2030), and Design year (2040) per the project scope; while the Build alternative was analyzed only for the Design year (2040) because Build analysis for the Design year (2040) showed that the intersections along the corridor operate under acceptable LOS conditions, rendering it unnecessary to analyze the Build alternative in prior years.

No Build Alternative

This alternative assumes that no improvements will be made along the study corridor until Design year 2040. The lane geometry for No Build conditions is shown in Figure 2-1.

No Build Condition Analysis

Intersection level of service for Opening year (2020), Interim year (2030), and Design year (2040) conditions was evaluated using Synchro (Version 9). The analysis results for the intersections within the project limits are summarized in Table 4-1 (LOS and Delay). Segment analysis was conducted using HighPlan and the results are summarized in Table 4-2. The Synchro outputs and HighPlan outputs are included in Appendix H.

All intersections along the study corridor operate under acceptable LOS conditions under the No Build alternative. However, arterial LOS conditions analysis shows the segments from Old SR 8 (North) to CR 29 operate at LOS D conditions which is worse than acceptable LOS conditions (LOS C).

Table 4-1: LOS and Delay for Future Years (No Build)

SR 70 Intersection	2020				2030				2040			
	AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
	$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	Los	Delay (sec/veh)	L.OS	Delay (sec/veh)	LOS	$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS
S. Jefferson Ave/Placid Lakes Boulevard*	12.0	B	11.0	B	13.2	B	12.1	B	14.5	B	13.4	B
Placid View Drive*	12.4	B	10.2	B	13.4	B	10.9	B	14.8	B	11.7	B
Old SR 8 (North)*	12.7	B	10.7	B	13.9	B	11.6	B	15.1	C	12.8	B
Old SR 8 (South)*	11.3	B	11.1	B	12.5	B	12.7	B	13.9	B	15.1	C
Distribution Blvd*	10.6	B	10.8	B	10.9	B	11.6	B	11.2	B	12.6	B
Chevron/Circle K Driveways*	12.6	B	11.1	B	14.1	B	12.1	B	16.0	C	13.1	B
US 27	23.8	C	24.6	C	24.7	C	25.5	C	25.6	C	27.4	C
Placid Pine Drive*	11.7	B	9.9	A	12.7	B	10.4	B	13.8	B	11.0	B
Broward Ave*	9.6	A	9.8	A	9.8	A	10.2	B	10.1	B	10.6	B
Highlands Blvd*	12.1	B	10.4	B	13.1	B	11.0	B	14.2	B	11.9	B
Citrus Blvd*	9.5	A	10.3	B	9.8	A	11.1	B	10.0	A	11.8	B
CR 29*	11.6	B	11.1	B	12.4	B	12.0	B	13.4	B	13.0	B

* Unsignalized intersection, worst approach delay used.

Table 4-2: No Build Arterial LOS

Corridor	From	To	Segment Length (Miles)	2020			2030			2040		
				Percentage Time Spent Following (Sec)	Average Speed (mph)	LOS	Percentage Time Spent Following (Sec)	Average Speed (mph)	LOS	Percentage Time Spent Following (Sec)	Average Speed (mph)	Los
SR 70	S. Jefferson Avenue/ Placid Lakes Boulevard	Old SR 8 (North)	3.2	53.7	58.3	C	59.0	57.8	C	62.0	57.2	C
	Old SR 8 (North)	US 27	1.1	69.7	46.1	D	71.0	45.5	D	74.2	44.9	D
	US 27	Highlands Boulevard	1.3	66.9	46.6	D	69.8	46.0	D	70.8	45.5	D
	Highlands Boulevard	CR 29	1.5	67.4	56.5	D	69.4	55.9	D	71.0	55.3	D

Future Conditions Analysis

Build Alternative

The proposed improvements include four-laning the study corridor from the existing two lanes. The proposed alternative lane geometry median openings are shown in Figure 4-4a and Figure 4-4b.

Build Conditions Analysis

Intersection level of service only for Design year (2040) conditions was evaluated using Synchro (Version 9). Only Design year (2040) conditions was analyzed because Build analysis for the Design year (2040) showed that the intersections along the corridor would operate under acceptable LOS conditions, rendering it unnecessary to analyze the Build alternative in prior years. The analysis results for the intersection within the project limits are summarized in Table 4-3 (LOS and delay). Segment analysis was conducted using HighPlan and the results are summarized in Table 4-4. The analysis results for the existing condition are also included for comparison purposes. The Synchro outputs and HighPlan outputs are included in Appendix I.

All intersections operate under acceptable LOS conditions under the Build alternative. Arterial LOS conditions analysis shows all the segments operate at acceptable LOS conditions.

Table 4-3: LOS and Delay for Future Years (Build)

SR 70 Intersection	2040			
	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
S. Jefferson Ave/Placid Lakes Boulevard*	12.5	B	12.1	B
Placid View Drive*	12.7	B	10.6	B
Old SR 8 (North)*	14.3	B	12.2	B
Old SR 8 (South)*	9.5	A	9.9	A
Distribution Blvd*	10.4	B	13.8	B
Chevron/Circle K Driveways*	9.7	A	9.6	A
US 27	24.5	C	26.3	C
Placid Pine Drive*	9.5	A	9.4	A
Broward Ave*	9.3	A	9.6	A
Highlands Blvd*	9.3	A	9.6	A
Citrus Blvd*	12.5	B	12.0	B
CR 29*	12.0	B	12.2	B

* Unsignalized intersection, worst approach delay used.

Table 4-4: Build Arterial LOS (Year 2040)

Corridor	From	To	Segment Length $($ Miles $)$	Density $(\mathrm{pc} / \mathrm{ln} / \mathrm{mi})$	Average Speed (mph)	LOS
	S. Jefferson Avenue/ Placid Lakes Boulevard	Old SR 8 (North)	3.2	3.6	65.0	A
	Old SR 8 (North)	US 27	1.1	5.8	55.0	A
	US 27	Highlands Boulevard	1.3	4.9	55.0	A
	Highlands Boulevard	CR 29	1.5	4.6	65.0	A

Summary of Findings

Traffic operational analysis along the SR 70 study corridor was conducted to evaluate the need to widen the study corridor from a 2-lane undivided arterial facility to a 4-lane divided arterial facility. Along with the traffic operational analysis, safety and hurricane evacuation evaluations were also conducted. Hurricane evacuation transportation analysis using the Transportation Interface for Modeling Evacuations (TIME) model is shown in Appendix J.

Conclusion

Crash analysis along the study corridor showed that more than one-third of the crashes were one vehicle crashes (24 crashes out of 63 total crashes). These crashes involved vehicles crashing into a fixed object, or animal or running into a ditch as a major contributor. Also, it was noted that excessive speeds along the study corridor might have also contributed for crash rates being higher than statewide average crash rates along similar corridors. Implementation of design components to reduce travel speeds and make travelers aware that they are approaching a signalized intersection near US 27 can be achieved by installing signal warning signs or beacons. Widening the study corridor to four lanes should also be considered as a high percentage (14% during peak hour) of truck traffic utilizes this section of the SR 70 corridor.

Hurricane evacuation transportation analysis shows that widening the study corridor to four lanes will reduce the queues along the study corridor from east of US 27 to CR 29 which were observed under No Build conditions.

Intersection Analysis - Design hour traffic evaluation under existing conditions and future Design year (2040) No Build conditions showed that all of the intersections along the SR 70 study corridor operate under acceptable LOS conditions. A Build alternative analysis was also conducted for the Design year (2040) which also shows that the intersections along the SR 70 study corridor will operate under acceptable LOS conditions.

Arterial Analysis - Evaluation of segment LOS conditions showed that under existing (2015) conditions, the segment of SR 70 from Old SR 8 (North) to US 27 operates at LOS D which is worse than acceptable LOS conditions (LOS C). Under future No Build conditions, the segments along SR 70 from Old SR 8 (North) to CR 29 operate at LOS D conditions. This indicates that the study corridor will require capacity improvements to make the corridor operate at acceptable LOS conditions (LOS C). The Build conditions segment analysis showed that the proposed lane addition (2 to 4 lanes) will make the corridor operate at LOS A conditions.

The crash and hurricane evacuation analyses also indicate that a widening of the corridor will be needed. Highlands County is part of the Rural Area of Critical Economic Concern (RACEC) or Rural Area of Opportunity program defined by the state of Florida legislature to encourage and facilitate the location and expansion of major economic development projects of significant scale in such rural communities.

Therefore, widening the study corridor to four lanes should be considered as an alternative after carefully evaluating other PD\&E elements.

Appendix B:
Evacuation Transportation Analysis Report

FLGRIDA STATEWIDE RFGIDNAL EVABUATIGN STMDY PRanram

EVABUATIGN TRANSPGRTATIGN ANALYSIIS

V包しMए 4－7

FLGRIDA DIVISIGN ロF FMERERNEY MANAREMENT

ロENTRAL FLGRIDA REGIGNAL PLANNING DGUNGIL

CENTRAL IFLQRIDA REGION

INCLUDES HURRIDANE EVACUATIGN STUDY

EVACUATION TRANSPORTATION ANALYSIS

VOLUME 4-7

CENTRAL FLORIDA REGION

Prepared for:
Central Florida Regional Planning Council
Florida Division of Emergency Management

Prepared by:
in association with:
BCC Engineering, Inc.
September 2010

Congested Roadways

A summary of the total number of evacuating vehicles for each of the operational scenarios is presented in Table IV-25. It is important to note that the total number of evacuating vehicles in the table below includes vehicles evacuating from all of the counties included in the operational scenario, as identified in Table IV-19. The number of counties varies by scenario, with four of the scenarios including 10 counties stretching from Collier County to Sumter County.

Table IV-25 - Total Evacuating Vehicles for Operational Scenarios

	Evacuation Level A Operational Scenario	Evacuation Level B Operational Scenario	Evacuation Level C Operational Scenario	Evacuation Level D Operational Scenario	Evacuation Level E Operational Scenario
2010	386,000	236,914	283,276	621,822	371,482
2015	366,801	270,276	880,514	396,546	380,628

Similar to the base scenarios, critical roadways were identified by reviewing roadways in the model network that have the highest vehicle queues for extended periods of time during an evacuation. Due to the nature of a major evacuation in general, nearly all roadway facilities will have extended vehicle queues at some point during the evacuation process. The point of this analysis is to identify those roadway facilities that have vehicle queues for the longest time periods during each of the evacuation scenarios. Critical roadway segments for the Central Florida region are identified in Figures IV-14 through IV-23 for each of the operational scenarios for 2010 and 2015.

Critical facilities for the operational scenarios vary greatly depending upon the scenario, as illustrated in the figures. For example, for the 2015 level D operational scenario, which assumes a southeast to northwest storm track west of Okeechobee City, critical facilities include US 441 and SR 70 in Okeechobee County and SR 70, US 27, and US 98 in Highlands County. In contrast, for the 2015 level C operational scenario, which assumes a west to east storm track along the I-4 corridor, the critical facilities within the Central Florida region are concentrated in Polk County.

In addition to the identification of critical roadway segments, the total number of evacuating vehicles entering and exiting each county by evacuation scenario was also determined. Evacuating vehicles exiting each county by major evacuation route are identified in Table IV26 for 2010 and Table IV-27 for 2015. In addition, evacuating vehicles entering each county by major evacuation route are identified in Table IV-28 for 2010 and Table IV-29 for 2015. Detailed volume figures for all evacuation routes in the Central Florida Region for each operational scenario are included in Volume 5-7.

The number of vehicles entering and exiting each county during an evacuation varies widely depending upon the scenario, roadway, and county. As expected, major interstates and state highways generally carry larger volumes of evacuating traffic. The vehicle flows into and out of each county also generally follow the same pattern as the critical segment figures, as locations with higher queues and congestion generally have higher traffic volumes.

Critical Roadway Segments with Excessive Vehicle Queues for 2015 Operational Scenario Evacuation Level D

：S．EVIコ
 Nんゅ CZ＇GX

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2018	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		13	284	\cdots			202	8						17		13
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage																
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2018	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		8	164	V			239	13						13		9
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage																
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	9													24	
Capacity, c (veh/h)	1239													608	
v/c Ratio	0.01													0.04	
95\% Queue Length, Q_{95} (veh)	0.0													0.1	
Control Delay (s/veh)	7.9													11.2	
Level of Service (LOS)	A													B	
Approach Delay (s/veh)		0.4												11.2	
Approach LOS														B	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2018
Project Description: Existing Conditions Eastbound		
Input Data		
 Analysis direction vol., V_{d} $301 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $210 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4	1.5
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.958	0.948
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	342	241
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.6 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.2% Percent free flow speed, PFFS 8	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	331	231
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	33.3	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	42.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.19	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2018
Project Description: Existing Conditions Eastbound		
Input Data		
Analysis direction vol., V_{d} $177 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $252 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5	1.4
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.948	0.958
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	203	286
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $51.3 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 90.6% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	195	277
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	22.9	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.8	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	29.0	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.11	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2018
Project Description: Existing Conditions Westbound		
Input Data		
 Analysis direction vol., V_{d} $210 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $301 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5	1.4
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.948	0.958
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	241	342
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.5% Percent free flow speed, PFFS 8	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	231	331
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	27.1	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	33.2	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.13	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2018
Project Description: Existing Conditions Westbound		
Input Data		
 Analysis direction vol., V_{d} $252 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $177 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4	1.5
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.958	0.948
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	286	203
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.6 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $51.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 90.4% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	277	195
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	28.3	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.8	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	37.0	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.16	

Section/Roadway ID:
Intersecting Route:
Milepost:
County:

Crash
Number
 Date

State Road:
Study Period:
Data by:
Date:

Property Damage
$\$ 5,200$
$\$ 49,000$
$\$ 2,000$
$\$ 5,000$

| Crash Type |
| :---: | :---: | :---: |
| Hit Fixed Object |
| Sideswipe, same
 direction |
| Animal (Non-
 Located) |

Day /	Wet /	Co				
Night	Dry		$	$	Day	Dry
:---	:---	Ca				

Contributing Cause Careless/ Negligent Driving No Contributing Action No Contributing Action Careless/ Negligent Driving No Contributing Action
Failed to Yield Right-of-Way

Miscellaneous
Contributing Cause No Contributing Action

Miscellaneous
Contributing Cause
No Contributing Action
Careless/ Negligent Driving No Contributing Action Careless/ Negligent Driving
Other Contributing Action
No Contributing Action
Other Contributing Action

Failed to Keep in Proper Lane

Careless/ Negligent Driving Careless/ Negligent Driving

Water
(standing Miscellaneous /moving) Contributing Cause No Contributing Action

Crash Number	Date	Day	Time	Severity		Property Damage	Crash Type	Day / Night	Wet I Dry	Contributing Cause
				Fatal	Injury					
22	8/10/2015	Mon	12:20 PM	0	2	\$4,000	Angle	Night	Dry	Failed to Yield Right-of-Way
23	6/1/2015	Mon	09:30 AM	0	0	\$10,400	Hit Fixed Object	Night	Dry	Careless/ Negligent Driving
24	5/12/2015	Tue	12:10 PM	0	0	\$4,000	Rear End	Night	Dry	Careless/ Negligent Driving
25	4/16/2015	Thu	06:30 AM	0	0	\$7,500	Rear End	Night	Dry	Careless/ Negligent Driving
26	3/27/2015	Fri	03:51 PM	1	2	\$30,000	Sideswipe, Opposite direction	Night	Wet	Failed to Keep in Proper Lane
27	2/13/2015	Fri	06:00 PM	0	0	\$501	Sideswipe, Opposite direction	Night	Dry	Unknown
28	11/7/2014	Fri	08:55 AM	0	1	\$12,000	Other	Night	Dry	No Contributing Action
29	7/2/2014	Wed	12:00 PM	0	0	\$2,000	Other	Night	Dry	Miscellaneous Contributing Cause
30	6/19/2014	Thu	09:20 PM	0	0	$\$ 11,500$	Animal (NonLocated)	Day	Wet	No Contributing Action
31	5/3/2014	Sat	12:50 AM	0	1	$\$ 10,000$	Animal (NonLocated)	Day	Dry	No Contributing Action
32	4/14/2014	Mon	01:00 AM	0	0	\$500	Animal (NonLocated)	Day	Wet	No Contributing Action
33	3/5/2014	Wed	08:15 AM	0	1	\$1,000	Other	Night	Dry	No Contributing Action
34	1/28/2014	Tue	02:30 PM	0	0	\$1,500	Other	Night	Dry	Unknown
35	12/15/2013	Sun	05:37 PM	0	1	\$5,000	Ran Off Road	Day	Dry	Failed to Keep in Proper Lane
36	9/15/2013	Sun	11:45 PM	0	0	\$9,000	Animal (NonLocated)	Day	Dry	Careless/ Negligent Driving
37	1/1/2013	Tue	10:30 AM	0	1	\$8,500	Rear End	Night	Dry	Careless/ Negligent Driving

Florida Average Crash Rates for Urban Segments

Crash Rates Per Million Vehicle Miles

CC	Category	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	5 Year Average
40	One Way	6.755	8.357	10.061	10.940	10.757	9.399
10	2-3 Lanes 2wy Div Rasd	4.545	4.857	6.004	6.267	7.535	5.849
11	2-3 Lanes 2wy Div Pavd	3.207	4.018	4.654	5.428	6.238	4.701
12	2-3 Lanes 2wy Undivided	2.238	2.685	3.198	3.461	3.452	2.993
20	4-5 Lanes 2wy Div Rasd	2.331	2.756	3.168	3.495	3.753	3.124
21	4-5 Lanes 2wy Div Pavd	3.942	4.665	5.141	5.795	6.162	5.145
22	4-5 Lanes 2wy Undivided	3.972	5.228	6.067	6.263	6.992	5.683
30	6+ Lanes 2wy Div Rasd	3.183	3.570	4.085	4.511	4.867	4.066
31	6+ Lanes 2wy Div Pavd	3.287	4.197	4.760	5.175	5.493	4.591
32	6+ Lanes 2wy Undivided	66.184	39.769	54.148	71.186	68.039	58.320
1	Interstate	0.671	0.771	0.888	0.907	0.991	0.850
3	Toll Road	0.529	0.609	0.766	0.761	0.779	0.695
7	Ramp	0.000	0.000	0.000	0.000	0.000	0.000
5	Other Limited access	1.385	1.873	1.803	1.928	2.089	1.799

Florida Average Crash Rates for Rural Segments
Crash Rates Per Million Vehicle Miles

CC	Category	2011	2012	2013	2014	$\mathbf{2 0 1 5}$	5 Year Average
42	One Way	6.835	9.368	13.940	3.149	3.624	4.946
16	2-3 Lanes 2wy Div Rasd	0.869	0.995	1.510	0.794	0.901	1.012
17	2-3 Lanes 2wy Div Pavd	1.761	1.705	1.884	1.755	1.885	1.808
18	2-3 Lanes 2wy Undivided	0.560	0.647	0.718	0.727	0.777	0.687
26	4-5 Lanes 2wy Div Rasd	0.540	0.605	0.684	0.643	0.717	0.641
27	4-5 Lanes 2wy Div Pavd	0.437	0.401	0.636	0.531	0.499	0.492
28	4-5 Lanes 2wy Undivided	0.000	0.000	0.000	0.000	0.000	0.000
36	6+ Lanes 2wy Div Rasd	1.383	1.386	1.030	0.369	0.793	1.054
37	6+ Lanes 2wy Div Pavd	0.076	0.060	0.000	0.000	0.000	0.093
38	6+ Lanes 2wy Undivided	0.000	0.000	0.000	0.000	0.000	0.000
2	Interstate	0.339	0.366	0.438	0.415	0.498	0.412
4	Toll Road	0.322	0.354	0.426	0.370	0.454	0.384
8	Ramp	0.000	0.000	0.000	0.000	0.000	0.000
6	Other Limited access	0.224	0.112	0.502	0.819	1.224	0.545

TURNS5 Design Hour Volumes

TURNS5 ANALYSIS SHEET - INPUT

1st Guess Actual/Counted
Turning \%'s for Traffic

	Turning \%'s for AADT Balancing		Traffic for 2015
(EB LT)	West-to-North	12\%	12
(EB THRU)	West-to-East	88\%	261
(EBRT)	West-to-South	0\%	0
($W B L T$)	East-to-South	0\%	0
(WB THRU)	East-to-West	91\%	185
(WB RT)	East-to-North	9\%	7
($S B \times T$)	North-to-East	41\%	16
(SB THRU)	North-to-South	1\%	0
(SBRT)	North-to-West	58\%	12
($N B \angle T$)	South-to-West	55\%	0
(NB THRU)	South-to-North	7\%	0
(NBRT)	South-to-East	38\%	0

Desired Closure:

Highway:	SR 70	County:	Highlands
Intersection:	CR 29		
From:	AM Peak Hour	0	Analyst:
To:		H.W. Lochner	

TURNS5 ANALYSIS SHEET - INPUT

1st Guess Actual/Counted
Turning \%'s for Traffic

	Turning \%'s for AADT Balancing		Traffic for 2015
($E B L T$)	West-to-North	12\%	7
(EB THRU)	West-to-East	88\%	150
(EB RT)	West-to-South	0\%	0
(WB LT)	East-to-South	0\%	0
(WB THRU)	East-to-West	91\%	219
(WBRT)	East-to-North	9\%	12
(SBLT)	North-to-East	41\%	12
(SB THRU)	North-to-South	1\%	0
(SBRT)	North-to-West	58\%	8
($N B L T$)	South-to-West	55\%	0
(NB THRU)	South-to-North	7\%	0
(NB RT)	South-to-East	38\%	0

Desired Closure:

Highway:	SR 70	County:	Highlands
Intersection:	CR 29		
From:	PM Peak Hour	0	Analyst:
To:		H.W. Lochner	

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2025	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	No-Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		22	302	\cdots			211	16						21		22
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage																
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2025	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	No-Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		16	211	\checkmark			302	21						16		16
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	17													35	
Capacity, c (veh/h)	1159													535	
v/c Ratio	0.02													0.07	
95\% Queue Length, Q_{95} (veh)	0.0													0.2	
Control Delay (s/veh)	8.2													12.2	
Level of Service (LOS)	A													B	
Approach Delay (s/veh)		0.7												12.2	
Approach LOS														B	

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2035	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	No-Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		29	363	\checkmark			254	23						34		29
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	32													68	
Capacity, c (veh/h)	1210													466	
v/c Ratio	0.03													0.15	
95\% Queue Length, Q_{95} (veh)	0.1													0.5	
Control Delay (s/veh)	8.1													14.1	
Level of Service (LOS)	A													B	
Approach Delay (s/veh)		0.8												14.1	
Approach LOS														B	

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2035	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	No-Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		21	254				363	34						23		21
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2045	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	No-Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		38	419	,			293	31						45		38
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2045	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	No-Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		27	293	N			419	45						31		27
Percent Heavy Vehicles (\%)		11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																

Base Critical Headway (sec)	4.1												7.1		6.2
Critical Headway (sec)	4.21												6.51		6.31
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.30												3.60		3.40

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	29													63	
Capacity, c (veh/h)	1015													389	
v/c Ratio	0.03													0.16	
95\% Queue Length, Q_{95} (veh)	0.1													0.6	
Control Delay (s/veh)	8.7													16.0	
Level of Service (LOS)	A													C	
Approach Delay (s/veh)		1.0												16.0	
Approach LOS														C	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2025
Project Description: No-Build, Eastbound		
Input Data		
 Analysis direction vol., V_{d} $323 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $227 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.5
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.968	0.948
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	363	260
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 88.7% Percent free flow speed, PFFS 8.	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	355	249
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	36.3	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	45.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.21	

Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700		
Capacity, $\mathrm{C}_{\mathrm{d}, \text { PTSF }}$ (Equation 15-13) veh/h	1700		
Percent Free-Flow Speed PFFS ${ }_{\text {d }}$ (Equation 15-11-Class III only)	88.7		
Bicycle Level of Service			
Directional demand flow rate in outside lane, v_{OL} (Eq. 15-24) veh/h	351.1		
Effective width, Wv (Eq. 15-29) ft	14.00		
Effective speed factor, S_{t} (Eq. 15-30)	4.79		
Bicycle level of service score, BLOS (Eq. 15-31)	7.93		
Bicycle level of service (Exhibit 15-4)	F		
Notes			
1. Note that the adjustment factor for level terrain is 1.00 , as level terrain is one of the base conditions. For the purpose of grade adjustment, specific downgrade segments are treated as level terrain. 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis--the LOS is F. 3. For the analysis direction only and for $v>200 \mathrm{veh} / \mathrm{h}$. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.			
Copyright © 2018 University of Florida, All Rights Reserved HCS TM TwoLane Version 7.6 Generated: 10/24/2018 1:40 PM			

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2025
Project Description: No-Build, Eastbound		
Input Data		
Analysis direction vol., V_{d} $227 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $323 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5	1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.948	0.968
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	260	363
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.0% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	249	355
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	29.2	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	35.3	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.14	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2025
Project Description: No-Build, Westbound		
Input Data		
Analysis direction vol., V_{d} $227 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $323 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5	1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.948	0.968
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	260	363
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{v/} / \mathrm{fV}, \mathrm{ATS})$ Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.0% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	249	355
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	29.2	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	35.3	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.14	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2025
Project Description: No-Build, Westbound		
Input Data		
 Analysis direction vol., V_{d} $323 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $227 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.5
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.968	0.948
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	363	260
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 88.7% Percent free flow speed, PFFS 8.	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	355	249
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	36.3	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	45.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.21	

Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700		
Capacity, $\mathrm{C}_{\mathrm{d}, \text { PTSF }}$ (Equation 15-13) veh/h	1700		
Percent Free-Flow Speed PFFS ${ }_{\text {d }}$ (Equation 15-11-Class III only)	88.7		
Bicycle Level of Service			
Directional demand flow rate in outside lane, v_{OL} (Eq. 15-24) veh/h	351.1		
Effective width, Wv (Eq. 15-29) ft	14.00		
Effective speed factor, S_{t} (Eq. 15-30)	4.79		
Bicycle level of service score, BLOS (Eq. 15-31)	7.93		
Bicycle level of service (Exhibit 15-4)	F		
Notes			
1. Note that the adjustment factor for level terrain is 1.00 , as level terrain is one of the base conditions. For the purpose of grade adjustment, specific downgrade segments are treated as level terrain. 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis--the LOS is F. 3. For the analysis direction only and for $v>200 \mathrm{veh} / \mathrm{h}$. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.			
Copyright © 2018 University of Florida, All Rights Reserved HCS TM TwoLane Version 7.6 Generated: 10/24/2018 1:44 PM			

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2035
Project Description: No-Build, Eastbound		
Input Data		
Analysis direction vol., V_{d} $397 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $277 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.4
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.968	0.958
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	446	314
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.0% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	432	304
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	43.1	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.2	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	51.4	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.25	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel SR 70 From/To CR 29 to Lonesome Island Road Jurisdiction Highlands County Analysis Year 2035
Project Description: No-Build, Eastbound	
Input Data	
Average Travel Speed	
\square	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.958
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	314
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{~V} / \mathrm{f} \mathrm{HV}, \mathrm{ATS})$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.4% Percent free flow speed, PFFS 8
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	304 432
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	36.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	42.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	B
Volume to capacity ratio, v/c	0.18

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel SR 70 From/To CR 29 to Lonesome Island Road Jurisdiction Highlands County Analysis Year 2035
Project Description: No-Build, Westbound	
Input Data	
Average Travel Speed	
\square	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.958
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	314
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{~V} / \mathrm{f} \mathrm{HV}, \mathrm{ATS})$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.4% Percent free flow speed, PFFS 8
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	304 432
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	36.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	42.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	B
Volume to capacity ratio, v/c	0.18

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2035
Project Description: No-Build, Westbound		
Input Data		
Analysis direction vol., V_{d} $397 \mathrm{veh} / \mathrm{h}$ Opposing direction vol., V_{o} $277 \mathrm{veh} / \mathrm{h}$ Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.4
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.968	0.958
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	446	314
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.0% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	432	304
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	43.1	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	14.2	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	51.4	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.25	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2045
Project Description: No-Build, Eastbound		
Input Data		
Analysis direction vol., V_{d} 464 ve Opposing direction vol., V_{o} 324 ve Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2	1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.978	0.968
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	516	364
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 85.5% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	504	356
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	48.8	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	13.7	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	56.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.30	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2045
Project Description: No-Build, Eastbound		
Input Data		
Analysis direction vol., V_{d} 324 veh Opposing direction vol., V_{o} 464 veh Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.968	0.978
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	364	516
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 86.0% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	356	504
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	41.6	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	13.7	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	47.3	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.21	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period AM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2045
Project Description: No-Build, Westbound		
Input Data		
Analysis direction vol., V_{d} 324 veh Opposing direction vol., V_{o} 464 veh Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Clas highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access po	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.968	0.978
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	364	516
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 86.0% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.989	1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	356	504
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	41.6	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	13.7	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	47.3	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.21	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Elizabeth Fernandez Agency or Company H.W. Lochner Date Performed October 2018 Analysis Time Period PM Peak Hour	Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 70 CR 29 to Lonesome Island Road Highlands County 2045
Project Description: No-Build, Westbound		
Input Data		
Analysis direction vol., V_{d} 464 ve Opposing direction vol., V_{o} 324 ve Shoulder width ft 4.0 Lane Width ft 10.0 Segment Length mi 2.5	Show North Arrow highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2	1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.978	0.968
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	516	364
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \text { ATS }}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.4 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $56.6 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 85.5% Percent free flow speed, PFFS 8.0	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000	0.989
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	504	356
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	48.8	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	13.7	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }_{d}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $v_{o, P T S F}$)	56.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	B	
Volume to capacity ratio, v/c	0.30	

Appendix H:
HSM Predictive Method Computations - 2045 No Build

Overview

This spreadsheet has been developed to demonstrate the predictive models for rural two-lane highways as contained in the new Highway Safety Manual. The content was developed for training purposes and all users should verify that the answers they obtain with these worksheets correctly represent their target analysis.

The page tabs shown at the bottom of this file represent the various analyses that can be performed using this spreadsheet tool and the HSM predictive methods. A user can evaluate an individual road segment or intersection as well as analyze multiple road segments and intersections. If more than one segment type requires analysis, the user should create a blank worksheet and then copy the contents of the segment worksheet into the blank sheet and name the worksheet accordingly.

The current contents of this spreadsheet include the following:

p!!ng on st0Z レ łuəubəs

p!!ng ON StOZ L łuəmbəs

			$0 \angle \varepsilon^{\circ} 0$	81900	Z8\＆＇0	กZ
${ }^{10} \mathrm{~d}$	${ }^{\text {und }} \mathrm{d}$ OOd	${ }^{\text {auld }}$ Kın！ul pue ןełe」	${ }^{\text {u }} \mathrm{d}$	${ }^{\text {und }} \mathrm{d}$ Oad	${ }^{\text {unld Kıniul pue }}$［ełe」	әdК \wedge_{\perp} Кемреоу
746！u ze anooo łечł seysedo эo uo！podold	ןəィә｜K！！！əләs Kq səusenə әu！！					
			ON			
				sonje＾\nnejod WSH		

0．001	00	00	0，001	0．001	0．001		SヨHS＊YO 7VIO」
00	$0{ }^{\circ}$	00	L＇0¢	S＇92	て＇98		
			L＇Z	0 0 ε	$9{ }^{\text {＇}}$		ио！¢！｜｜｜Oכ ә｜！¢
			L＇ε	8 8	8 8＇		uo！s！｜loo əd！Msep！S
			でャレ	でてし	\checkmark－91		ио！s！！｜Io риә－леәу
			$9 \cdot 1$	$\varepsilon{ }^{\circ}$	\dagger＇ε		ио！s！！｜io uo－реән
			9＇8	でし	$0 \cdot 01$		uo！s！｜｜00 ə¢и ${ }^{\text {a }}$
$0 \cdot 0$	0.0	0.0	$\varepsilon 69$	¢＇EL	$8 . \varepsilon 9$		
			L＇Z	6 ＇	L＇0		पse」 әр！чəл－ә｜бu！
			－I＇ZS	S $\mathrm{OS}^{\text {S }}$	cts		peor yо uey
			S＇z	G ＇	L＇ε		рәициәло
			$\varepsilon \cdot 0$	10	LO		ие！иsepad प！！M ио！s！！｜io
			で0	10	$\square^{\circ} 0$		
			し＇てし	7 －81	$8 \cdot 8$		
	\square						
	Kןuo әбешгер Kıәdord			әбешер Kinadodd	Kın！̣！pue lełej fełol	ON	
			sonje＾pop！＾o．d－WSH				

路

HSM Predictive Method Computations - 2045 Build

Highway Safety Manual 1st Edition, Volume 2, Chapter 11-- Predictive Method for Rural Multilane Highways -- Analysis Spreadsheet Summary
Overview
This spreadsheet has been developed to demonstrate the predictive models
for rural multilane highways as contained in the new Highway Safety Manual.
The content was developed for training purposes and all users should
verify that the answers they obtain with these worksheets correctly
represent their target analysis.

The page tabs shown at the bottom of this file represent the various analysEs that can be performed using this spreadsheet tool and the HSM predictive methods. A user can evaluate an individual road segment or intersection as well as analyze multiple road segments and intersections. If more than one segment type (such as rural divided) needs analysis, the user should create a blank worksheet and then copy the contents of the associated sheet (in this example the rural divided sheet) into the blank sheet and name the file accordingly.

The current contents of this spreadsheet include the following:

Worksheet Name	Contents	
Instructions	Current worksheet displaying overview, summary of spreadsheet worksheets, and description of color coding included in the worksheets.	to supplement the analysis if this information is available. This optional input information is reserved for locally-derived crash informatis
If the analyst elects to use this option so as		
to improve analysis for local crash distribution		
trends, each of the Exhibits with the locally-		
derived input also includes a pull-down box		

Instructions

Analysis for project-specific EB analysis using results from the rural divided and undivided segment as well as rural intersection multilane worksheets. This analysis can be performed if the analyst has historic crash data, but does not know the exact location within the project limits at which the crashes occurred. The associated HSM worksheets are Worksheets 4 A and 4 B .

Data in this worksheet has been used to help define the pull-down options in the analysis worksheets. There is no need for a user to work within this worksheet, but the worksheet should be retained so that the other worksheets can continue to use the options included in this sheet.

Instructions

$62 Z ' Z$	$000 \cdot 1$	929×1	$000 \cdot 1$	$66 t^{\prime}$	$000 \cdot 1$	$82 L$＇t	$000 \cdot 1$	랑
（e）	9－ヶ！	（e） 31	9－1！	（e）$\bigcirc \downarrow$	9	（e）	9－レ	
О	ө｜qe \perp woul		शqㄹ﹎ wo．j		－ı өige ${ }^{\text {mouly }}$			
（деәК／sәуse．л） （OOd）（p）s．p popippord N	（OOd）बवरI ио！！！！｜lo丂 до uolyudo．d	（лее $/$／seyse．．） 		（．1ееス／seyse．．） 		 （7৮คO\＆）（p）s」 peฆp！poュd N	uoluododd	ədKı uois！｜ios
（6）	（8）	（L）	（9）	（c）	（t）	（ ε ）	（z）	（L）

 （s）：
 1

 and
 Etea thdul

			92ヤ゙0	LL9＇0	£てع＇0		Ot		
${ }^{3} \mathrm{~d}$	${ }^{\text {und }}$＇ OOd	＇Kınfu！pue ןete」	${ }^{3} \mathrm{~d}$	${ }^{\text {Judd }}$＇ OOd	＇Kın！u！pue plete＝				
	 		$\begin{gathered} \text { zu6!u łe ansoo } \\ \text { zeyt sayse.лэ to uo!podo.d. } \end{gathered}$	 		ON			
			әd Λ_{\perp} Кемреоу						
				S¢Z＇0	689＇0	198．0		nt	
${ }^{3} \mathrm{~d}$	und＇ OOd	＇Kun！u！pue ןete」	${ }^{\text {J }} \mathrm{d}$	${ }^{\text {und }}$＇ OOd					
				 		ON			
			әd Λ_{\perp} Кемреоу						
							sanje＾Pepino．dd－WSH		

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2025	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	T				T	TR							LR	
Volume (veh/h)	0	22	302				211	16						21		22
Percent Heavy Vehicles (\%)	3	11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1												7.5		6.9
Critical Headway (sec)	4.32												7.02		7.12
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.31												3.61		3.41

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2025	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	T				T	TR							LR	
Volume (veh/h)	0	16	211				302	21						16		16
Percent Heavy Vehicles (\%)	3	11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1												7.5		6.9
Critical Headway (sec)	4.32												7.02		7.12
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.31												3.61		3.41

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2035	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	T				T	TR							LR	
Volume (veh/h)	0	29	363				254	23						34		29
Percent Heavy Vehicles (\%)	3	11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1												7.5		6.9
Critical Headway (sec)	4.32												7.02		7.12
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.31												3.61		3.41

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	32													68	
Capacity, c (veh/h)	1194													633	
v/c Ratio	0.03													0.11	
95\% Queue Length, Q_{95} (veh)	0.1													0.4	
Control Delay (s/veh)	8.1													11.4	
Level of Service (LOS)	A													B	
Approach Delay (s/veh)		0.6												11.4	
Approach LOS														B	

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2035	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	T				T	TR							LR	
Volume (veh/h)	0	21	254				363	34						23		21
Percent Heavy Vehicles (\%)	3	11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1												7.5		6.9
Critical Headway (sec)	4.32												7.02		7.12
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.31												3.61		3.41

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	23													48	
Capacity, c (veh/h)	1063													592	
v/c Ratio	0.02													0.08	
95\% Queue Length, Q_{95} (veh)	0.1													0.3	
Control Delay (s/veh)	8.5													11.6	
Level of Service (LOS)	A													B	
Approach Delay (s/veh)		0.6												11.6	
Approach LOS														B	

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2045	North/South Street	CR 29
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1												7.5		6.9
Critical Headway (sec)	4.32												7.02		7.12
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.31												3.61		3.41

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Fernandez	Intersection	SR 70 and CR 29
Agency/Co.	H.W. Lochner	Jurisdiction	Highlands County
Date Performed	Oct 2018	East/West Street	SR 70
Analysis Year	2045	North/South Street	CR 29
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Build, SR 70 from CR 29 to Lonesome Island Road		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	T				T	TR							LR	
Volume (veh/h)	0	27	293				419	45						31		27
Percent Heavy Vehicles (\%)	3	11												11		11
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1												7.5		6.9
Critical Headway (sec)	4.32												7.02		7.12
Base Follow-Up Headway (sec)	2.2												3.5		3.3
Follow-Up Headway (sec)	2.31												3.61		3.41

Delay, Queue Length, and Level of Service

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2025
Jurisdiction	Highlands County	Time Period Analyzed	AM Peak Hour
Project Description	Build, Eastbound		

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	60.0	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Total Lateral Clearance (TLC), ft	12.00	
Access Point Density, pts/mi	4.0	Free-Flow Speed (FFS), mi/h	59.0

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	323	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	195
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.09

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	176	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.47
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2025
Jurisdiction	Highlands County	Time Period Analyzed	PM Peak Hour
Project Description	Build, Eastbound		

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	60.0	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Total Lateral Clearance (TLC), ft	12.00	
Access Point Density, pts/mi	4.0	Free-Flow Speed (FFS), mi/h	59.0

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	227	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	137
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.06

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	123	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.29
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2025
Jurisdiction	Highlands County	Time Period Analyzed	AM Peak Hour
Project Description	Build, Westbound		
Direction 1 Geometric Data			
Direction 1	Westbound	Terrain Type	Level
Number of Lanes (N), In	Percent Grade, \%	-	
Segment Length (L), ft	Grade Length, mi	-	
Measured or Base Free-Flow Speed	Base	Total Ramp Density (TRD), ramps/mi	0.00
Base Free-Flow Speed (BFFS), mi/h	60.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12.00
Median Type	Divee-Flow Speed (FFS), mi/h	59.0	
Access Point Density, pts/mi	4.0		

Direction 1 Adjustment Factors

| Driver Population | All Familiar | Final Speed Adjustment Factor (SAF) | 1.000 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 1.000 | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF | 1.000 | | |

Direction 1 Demand and Capacity

Volume(V) veh/h	227	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	137
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.06	

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (voL),veh/h	123	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.29
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2025
Jurisdiction	Highlands County	Time Period Analyzed	PM Peak Hour
Project Description	Build, Westbound		
Direction 1 Geometric Data			
Direction 1	Westbound	Terrain Type	Level
Number of Lanes (N), In	Percent Grade, \%	-	
Segment Length (L), ft	Grade Length, mi	-	
Measured or Base Free-Flow Speed	Base	Total Ramp Density (TRD), ramps/mi	0.00
Base Free-Flow Speed (BFFS), mi/h	60.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12.00
Median Type	Divee-Flow Speed (FFS), mi/h	59.0	
Access Point Density, pts/mi	4.0		

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	323	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	195
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.09

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	176	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.47
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2035
Jurisdiction	Highlands County	Time Period Analyzed	AM Peak Hour
Project Description	Build, Eastbound		

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	60.0	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Total Lateral Clearance (TLC), ft	12.00	
Access Point Density, pts/mi	4.0	Free-Flow Speed (FFS), mi/h	59.0

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	397	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	240
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.11

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	4.1
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	216	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.58
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2035
Jurisdiction	Highlands County	Time Period Analyzed	PM Peak Hour
Project Description	Build, Eastbound		

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	60.0	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Total Lateral Clearance (TLC), ft	12.00	
Access Point Density, pts/mi	4.0	Free-Flow Speed (FFS), mi/h	59.0

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	277	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	167
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.08

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	151	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.40
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2035
Jurisdiction	Highlands County	Time Period Analyzed	AM Peak Hour
Project Description	Build, Westbound		

Direction 1 Geometric Data

Direction 1	Westbound	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Total Ramp Density (TRD), ramps/mi	0.00
Base Free-Flow Speed (BFFS), mi/h	60.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12.00
Median Type	Divided	Free-Flow Speed (FFS), mi/h	59.0
Access Point Density, pts/mi	4.0		

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	277	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	167
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.08

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	151	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.40
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2035
Jurisdiction	Highlands County	Time Period Analyzed	PM Peak Hour
Project Description	Build, Westbound		

Direction 1 Geometric Data

Direction 1	Westbound	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Total Ramp Density (TRD), ramps/mi	0.00
Base Free-Flow Speed (BFFS), mi/h	60.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12.00
Median Type	Divided	Free-Flow Speed (FFS), mi/h	59.0
Access Point Density, pts/mi	4.0		

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	397	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	240
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.11

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (flLc)	0.0	Density (D), pc/mi/ln	4.1
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	216	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.58
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2045
Jurisdiction	Highlands County	Time Period Analyzed	AM Peak Hour
Project Description	Build, Eastbound		

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	60.0	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Total Lateral Clearance (TLC), ft	12.00	
Access Point Density, pts/mi	4.0	Free-Flow Speed (FFS), mi/h	59.0

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	464	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	280
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.13

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	4.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	252	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.66
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2045
Jurisdiction	Highlands County	Time Period Analyzed	PM Peak Hour
Project Description	Build, Eastbound		

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	60.0	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Total Lateral Clearance (TLC), ft	12.00	
Access Point Density, pts/mi	4.0	Free-Flow Speed (FFS), mi/h	59.0

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	324	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	196
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.09

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	176	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.47
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2045
Jurisdiction	Highlands County	Time Period Analyzed	AM Peak Hour
Project Description	Build, Westbound		

Direction 1 Geometric Data

Direction 1	Westbound	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Total Ramp Density (TRD), ramps/mi	0.00
Base Free-Flow Speed (BFFS), mi/h	60.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12.00
Median Type	Divided	Free-Flow Speed (FFS), mi/h	59.0
Access Point Density, pts/mi	4.0		

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	324	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	196
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.09

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	176	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.47
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	E

HCS7 Multilane Highway Report

Project Information

Analyst	Elizabeth Fernandez	Date	October 2018
Agency	H.W. Lochner	Analysis Year	2045
Jurisdiction	Highlands County	Time Period Analyzed	PM Peak Hour
Project Description	Build, Westbound		

Direction 1 Geometric Data

Direction 1	Westbound	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Total Ramp Density (TRD), ramps/mi	0.00
Base Free-Flow Speed (BFFS), mi/h	60.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12.00
Median Type	Divided	Free-Flow Speed (FFS), mi/h	59.0
Access Point Density, pts/mi	4.0		

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	464	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	280
Total Trucks, \%	11.00	Capacity (c), pc/h/ln	2180
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2180
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.13

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	59.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	4.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	252	Effective Speed Factor (St)	4.94
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	5.66
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F

TRAFFIC DATA FOR NOISE STUDIES - SUMMARY OUTPUT FDOT DISTRICT 1

Federal Aid Number(s):

FPID Number(s):	414506-5-22-01
State/Federal Route No.:	SR 70
Road Name:	Fritz Street
Project Description:	SR 70 PD\&E Study
Segment Description:	SR 70 from CR 29 to Lonesome Island Road
Section Number:	9060000
Mile Post To/From:	17.255 to 19.805

I certify that the above information is accurate and appropriate for use with the traffic noise analysis
Prepared By: \qquad Date: \qquad
Print Name Signature

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis
FDOT Reviewer: \qquad Date: \qquad

Air Quality Analysis

PD\&E
TRAFFIC DATA FOR AIR STUDY SCREENING TEST

DATE:	16-Oct-18
PREPARED BY:	$\underline{\text { H. W. Lochner }}$

Financial Project Number(s):
Work Program Item No.:
Federal Aid Numbers (s):
Project Description: \quad SR 70 from CR 29 to Lonesome Island Road PD\&E Study
NOTE: The most congested intersection is the intersection with the highest total volume and lowest departure speeds and it could be two different intersections based on the "Build" vs. "No-Build" alternatives. The traffic volumes are to be the vph of the most congested leg approaching the intersection. The speeds are to be the approach speed for the most congested leg no closer than 152.4 m (500') from the intersection.

